📄 rfc1351.txt
字号:
classes that are authorized to be processed by the specified target party when received from the specified subject party.3.12 SNMP Proxy Party A SNMP proxy party is a SNMP party that performs management operations by communicating with another, logically remote party. When communication between a logically remote party and a SNMP proxy party is via the SNMP (over any transport protocol), then the proxy party is called a SNMP native proxy party. Deployment of SNMP native proxy parties is a means whereby the processing or bandwidth costs of management may be amortized or shifted -- thereby facilitating the construction of large management systems. When communication between a logically remote party and a SNMP proxy party is not via the SNMP, then the proxy party is called a SNMP foreign proxy party. Deployment of foreign proxy parties is a means whereby otherwise unmanageable devices or portions of an internet may be managed via the SNMP. The transparency principle that defines the behavior of a SNMP party in general applies in particular to a SNMP proxy party: The manner in which one SNMP party processes SNMP protocol messages received from another SNMP party is entirely transparent to the latter. The transparency principle derives directly from the historical SNMP philosophy of divorcing architecture from implementation. To this dichotomy are attributable many of the most valuable benefits in both the information and distribution models of the management framework, and it is the architectural cornerstone upon which large management systems may be built. Consistent with this philosophy, although the implementation of SNMP proxy agents in certain environments may resemble that of a transport-layer bridge, this particular implementation strategy (or any other!) does not merit specialDavin, Galvin, & McCloghrie [Page 12]RFC 1351 SNMP Administrative Model July 1992 recognition either in the SNMP management architecture or in standard mechanisms for proxy administration. Implicit in the transparency principle is the requirement that the semantics of SNMP management operations are preserved between any two SNMP peers. In particular, the "as if simultaneous" semantics of a Set operation are extremely difficult to guarantee if its scope extends to management information resident at multiple network locations. For this reason, proxy configurations that admit Set operations that apply to information at multiple locations are discouraged, although such operations are not explicitly precluded by the architecture in those rare cases where they might be supported in a conformant way. Also implicit in the transparency principle is the requirement that, throughout its interaction with a proxy agent, a management station is supplied with no information about the nature or progress of the proxy mechanisms by which its requests are realized. That is, it should seem to the management station -- except for any distinction in underlying transport address -- as if it were interacting via SNMP directly with the proxied device. Thus, a timeout in the communication between a proxy agent and its proxied device should be represented as a timeout in the communication between the management station and the proxy agent. Similarly, an error response from a proxied device should -- as much as possible -- be represented by the corresponding error response in the interaction between the proxy agent and management station.3.13 Procedures This section describes the procedures followed by a SNMP protocol entity in processing SNMP messages. These procedures are independent of the particular authentication and privacy protocols that may be in use.3.13.1 Generating a Request This section describes the procedure followed by a SNMP protocol entity whenever either a management request or a trap notification is to be transmitted by a SNMP party. 1. An ASN.1 SnmpMgmtCom value is constructed for which the srcParty component identifies the originating party, for which the dstParty component identifies the receiving party, and for which the other component represents the desired management operation.Davin, Galvin, & McCloghrie [Page 13]RFC 1351 SNMP Administrative Model July 1992 2. The local database is consulted to determine the authentication protocol and other relevant information for the originating SNMP party. 3. An ASN.1 SnmpAuthMsg value is constructed with the following properties: o Its authInfo component is constructed according to the authentication protocol specified for the originating party. In particular, if the authentication protocol for the originating SNMP party is identified as noAuth, then this component corresponds to the OCTET STRING value of zero length. o Its authData component is the constructed SnmpMgmtCom value. 4. The local database is consulted to determine the privacy protocol and other relevant information for the receiving SNMP party. 5. An ASN.1 SnmpPrivMsg value is constructed with the following properties: o Its privDst component identifies the receiving SNMP party. o Its privData component is the (possibly encrypted) serialization of the SnmpAuthMsg value according to the conventions of [3] and [1]. In particular, if the privacy protocol for the receiving SNMP party is identified as noPriv, then the privData component is unencrypted. Otherwise, the privData component is processed according to the privacy protocol. 6. The constructed SnmpPrivMsg value is serialized according to the conventions of [3] and [1]. 7. The serialized SnmpPrivMsg value is transmitted using the transport address and transport domain for the receiving SNMP party.Davin, Galvin, & McCloghrie [Page 14]RFC 1351 SNMP Administrative Model July 19923.13.2 Processing a Received Communication This section describes the procedure followed by a SNMP protocol entity whenever a management communication is received. 1. If the received message is not the serialization (according to the conventions of [3] and [1]) of an ASN.1 SnmpPrivMsg value, then that message is discarded without further processing. 2. The local database is consulted for information about the receiving SNMP party identified by the privDst component of the SnmpPrivMsg value. 3. If information about the receiving SNMP party is absent from the local database, or specifies a transport domain and address which indicates that the receiving party's operation is not realized by the local SNMP protocol entity, then the received message is discarded without further processing. 4. An ASN.1 OCTET STRING value is constructed (possibly by decryption, according to the privacy protocol in use) from the privData component of said SnmpPrivMsg value. In particular, if the privacy protocol recorded for the party is noPriv, then the OCTET STRING value corresponds exactly to the privData component of the SnmpPrivMsg value. 5. If the OCTET STRING value is not the serialization (according to the conventions of [3] and [1]) of an ASN.1 SnmpAuthMsg value, then the received message is discarded without further processing. 6. If the dstParty component of the authData component of the obtained SnmpAuthMsg value is not the same as the privDst component of the SnmpPrivMsg value, then the received message is discarded without further processing. 7. The local database is consulted for information about the originating SNMP party identified by the srcParty component of the authData component of the SnmpAuthMsg value.Davin, Galvin, & McCloghrie [Page 15]RFC 1351 SNMP Administrative Model July 1992 8. If information about the originating SNMP party is absent from the local database, then the received message is discarded without further processing. 9. The obtained SnmpAuthMsg value is evaluated according to the authentication protocol and other relevant information associated with the originating SNMP party in the local database. In particular, if the authentication protocol is identified as noAuth, then the SnmpAuthMsg value is always evaluated as authentic. 10. If the SnmpAuthMsg value is evaluated as unauthentic, then the received message is discarded without further processing, and an authentication failure is noted. 11. The ASN.1 SnmpMgmtCom value is extracted from the authData component of the SnmpAuthMsg value. 12. The local database is consulted for access privileges permitted by the local access policy to the originating SNMP party with respect to the receiving SNMP party. 13. The management communication class is determined from the ASN.1 tag value associated with the SnmpMgmtCom value. 14. If the management communication class of the received message is either 16 or 4 (i.e., Trap or GetResponse) and this class is not among the access privileges, then the received message is discarded without further processing. 15. If the management communication class of the received message is not among the access privileges, then the received message is discarded without further processing after generation and transmission of a response message. This response message is directed to the originating SNMP party on behalf of the receiving SNMP party. Its var-bind-list and request-id components are identical to those of the received request. Its error-index component is zero and its error-status component is readOnly. 16. If the proxied party associated with the receiving SNMP party in the local database is identified as noProxy,Davin, Galvin, & McCloghrie [Page 16]RFC 1351 SNMP Administrative Model July 1992 then the management operation represented by the SnmpMgmtCom value is performed by the receiving SNMP protocol entity with respect to the MIB view identified with the receiving SNMP party according to the procedures set forth in [1]. 17. If the proxied party associated with the receiving SNMP party in the local database is not identified as noProxy, then the management operation represented by the SnmpMgmtCom value is performed through appropriate cooperation between the receiving SNMP party and the identified proxied party. In particular, if the transport domain associated with the identified proxied party in the local database is rfc1351Domain, then the operation requested by the received message is performed by the generation of a corresponding request to the proxied party on behalf of the receiving party. If the received message requires a response from the local SNMP protocol entity, then that response is subsequently generated from the response (if any) received from the proxied party corresponding to the newly generated request.3.13.3 Generating a Response This section describes the procedure followed by a SNMP protocol entity whenever a response to a management request is generated. The procedure for generating a response to a SNMP management request is identical to the procedure for transmitting a request (see Section 3.13.1), except for the derivation of the transport domain and address information. In this case, the response is transmitted using the transport domain and address from which the corresponding request originated -- even if that is different from the transport information recorded in the local database.4. Application of the Model This section describes how the administrative model set forth above is applied to realize effective network management in a variety of configurations and environments. Several types of administrative configurations are identified, and an example of each is presented.4.1 Non-Secure Minimal Agent Configuration
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -