📄 rfc2786.txt
字号:
Network Working Group M. St. JohnsRequest for Comments: 2786 Excite@HomeCategory: Experimental March 2000 Diffie-Helman USM Key Management Information Base and Textual ConventionStatus of this Memo This memo defines an Experimental Protocol for the Internet community. It does not specify an Internet standard of any kind. Discussion and suggestions for improvement are requested. Distribution of this memo is unlimited.Copyright Notice Copyright (C) The Internet Society (2000). All Rights Reserved.IESG Note This document specifies an experimental MIB. Readers, implementers and users of this MIB should be aware that in the future the IETF may charter an IETF Working Group to develop a standards track MIB to address the same problem space that this MIB addresses. It is quite possible that an incompatible standards track MIB may result from that effort.Abstract This memo defines an experimental portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it defines a textual convention for doing Diffie-Helman key agreement key exchanges and a set of objects which extend the usmUserTable to permit the use of a DH key exchange in addition to the key change method described in [12]. In otherwords, this MIB adds the possibility of forward secrecy to the USM model. It also defines a set of objects that can be used to kick start security on an SNMPv3 agent when the out of band path is authenticated, but not necessarily private or confidential. The KeyChange textual convention described in [12] permits secure key changes, but has the property that if a third-party has knowledge of the original key (e.g. if the agent was manufactured with a standard default key) and could capture all SNMP exchanges, the third-party would know the new key. The Diffie-Helman key change described hereSt. Johns Experimental [Page 1]RFC 2786 Diffie-Helman USM Key March 2000 limits knowledge of the new key to the agent and the manager making the change. In otherwords, this process adds forward secrecy to the key change process. The recommendation in [12] is that the usmUserTable be populated out of band - e.g. not via SNMP. If the number of agents to be configured is small, this can be done via a console port and manually. If the number of agents is large, as is the case for a cable modem system, the manual approach doesn't scale well. The combination of the two mechanisms specified here - the DH key change mechanism, and the DH key ignition mechanism - allows managable use of SNMPv3 USM in a system of millions of devices. This memo specifies a MIB module in a manner that is compliant to the SNMP SMIv2[5][6][7]. The set of objects is consistent with the SNMP framework and existing SNMP standards and is intended for use with the SNMPv3 User Security Model MIB and other security related MIBs. The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [16]. This memo is a private submission by the author, but is applicable to the SNMPv3 working group within the Internet Engineering Task Force. Comments are solicited and should be addressed to the the author.Table of Contents 1 The SNMP Management Framework ................................. 2 1.1 Structure of the MIB ........................................ 3 2 Theory of Operation ........................................... 4 2.1 Diffie-Helman Key Changes ................................... 4 2.2 Diffie-Helman Key Ignition .................................. 4 3 Definitions ................................................... 6 4 References .................................................... 17 5 Security Considerations ....................................... 18 6 Intellectual Property ......................................... 19 7 Author's Address .............................................. 19 8 Full Copyright Statement ...................................... 201. The SNMP Management Framework The SNMP Management Framework presently consists of five major components: o An overall architecture, described in RFC 2271 [1]. o Mechanisms for describing and naming objects and events for the purpose of management. The first version of this Structure of Management Information (SMI) is called SMIv1 and described in STDSt. Johns Experimental [Page 2]RFC 2786 Diffie-Helman USM Key March 2000 16, RFC 1155 [2], STD 16, RFC 1212 [3] and RFC 1215 [4]. The second version, called SMIv2, is described in STD 58, RFC 2578 [5], STD 58, RFC 2579 [6] and STD 58, RFC 2580 [7]. o Message protocols for transferring management information. The first version of the SNMP message protocol is called SNMPv1 and described in STD 15, RFC 1157 [8]. A second version of the SNMP message protocol, which is not an Internet standards track protocol, is called SNMPv2c and described in RFC 1901 [9] and RFC 1906 [10]. The third version of the message protocol is called SNMPv3 and described in RFC 1906 [10], RFC 2272 [11] and RFC 2274 [12]. o Protocol operations for accessing management information. The first set of protocol operations and associated PDU formats is described in STD 15, RFC 1157 [8]. A second set of protocol operations and associated PDU formats is described in RFC 1905 [13]. o A set of fundamental applications described in RFC 2273 [14] and the view-based access control mechanism described in RFC 2275 [15]. Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. Objects in the MIB are defined using the mechanisms defined in the SMI. This memo specifies a MIB module that is compliant to the SMIv2. A MIB conforming to the SMIv1 can be produced through the appropriate translations. The resulting translated MIB must be semantically equivalent, except where objects or events are omitted because no translation is possible (use of Counter64). Some machine readable information in SMIv2 will be converted into textual descriptions in SMIv1 during the translation process. However, this loss of machine readable information is not considered to change the semantics of the MIB.1.1. Structure of the MIB This MIB is structured into three groups and a single textual convention: o The DHKeyChange textual convention defines the process for changing a secret key value via a Diffie-Helman key exchange. o The usmDHPublicObjects group contains a single object which describes the public Diffie-Helman parameters required by any instance of a DHKeyChange typed object.St. Johns Experimental [Page 3]RFC 2786 Diffie-Helman USM Key March 2000 o The usmDHUserKeyTable augments and extends the usmUserTable defined in the SNMPv3 User-based Security Model MIB [12] by providing objects which permit the updating of the Authentication and Privacy keys for a row in this table through the use of a Diffie-Helman key exchange. o The usmDHKickstartTable provides a mechanism for a management station to be able to agree upon a set of authentication and confidentiality keys and their associated row in the usmUserTable.2. Theory of Operation2.1. Diffie-Helman Key Changes Upon row creation (in the usmUserTable), or object change (either of the object in the usmDHUserKeyTable or its associated value in the usmUserTable), the agent generates a random number. From this random number, the agent uses the DH parameters and transforms to derive a DH public value which is then published to the associated MIB object. The management station reads one or more of the objects in the usmDHUserKeyTable to get the agent's DH public values. The management station generates a random number, derives a DH public value from that random number (as described in the DHKeyChange Textual Convention), and does an SNMP SET against the object in the usmDHUserKeyTable. The set consists of the concatenation of the agent's derived DH public value and the manager's derived DH public value (to ensure the DHKeyChange object hasn't otherwise changed in the meantime). Upon successful completion of the set, the underlying key (authentication or confidentiality) for the associated object in the usmUserTable is changed to a key derived from the DH shared secret. Both the agent and the management station are able to calculate this value based on their knowledge of their own random number and the other's DH public number.2.2. Diffie-Helman Key Ignition [12] recommends that the usmUserTable be populated out of band, for example - manually. This works reasonably well if there are a small number of agents, or if all the agents are using the same key material, and if the device is physically accessible for that action. It does not scale very well to the case of possibly millions of devices located in thousands of locations in hundreds of markets inSt. Johns Experimental [Page 4]RFC 2786 Diffie-Helman USM Key March 2000 multiple countries. In other words, it doesn't work well with a cable modem system, and may not work all that well with other large- scale consumer broadband IP offerings. The methods described in the objects under the usmDHKickstartGroup can be used to populate the usmUserTable in the circumstances where you may be able to provide at least limited integrity for the provisioning process, but you can't guarantee confidentiality. In addition, as a side effect of using the DH exchange, the operational USM keys for each agent will differ from the operational USM keys for every other device in the system, ensuring that compromise of one device does not compromise the system as a whole. The vendor who implements these objects is expected to provide one or more usmSecurityNames which map to a set of accesses defined in the VACM [15] tables. For example, the vendor may provide a 'root' user who has access to the entire device for read-write, and 'operator' user who has access to the network specific monitoring objects and can also reset the device, and a 'customer' user who has access to a subset of the monitoring objects which can be used to help the customer debug the device in conjunction with customer service questions. To use, the system manager (the organization or individual who own the group of devices) generates one or more random numbers - R. The manager derives the DH Public Numbers R' from these random numbers, associates the public numbers with a security name, and configures the agent with this association. The configuration would be done either manually (in the case of a small number of devices), or via some sort of distributed configuration file. The actual mechanism is outside the scope of this document. The agent in turn generates a random number for each name/number pair, and publishes the DH Public Number derived from its random number in the usmDHKickstartTable along with the manager's public number and provided security name. Once the agent is initialized, an SNMP Manager can read the contents of the usmDHKickstartTable using the security name of 'dhKickstart' with no authentication. The manager looks for one or more entries in this table where it knows the random number used to derive the usmDHKickstartMgrPublic number. Given the manager's knowledge of the private random number, and the usmDHKickstartMyPublic number, the manager can calculate the DH shared secret. From that shared secret, it can derive the operational authentication and confidentiality keys for the usmUserTable row which has the matching security name. Given the keys and the security name, the manager can then use normal USM mechanisms to access the remainder of the agent's MIB space.St. Johns Experimental [Page 5]RFC 2786 Diffie-Helman USM Key March 20003. DefinitionsSNMP-USM-DH-OBJECTS-MIB DEFINITIONS ::= BEGINIMPORTS MODULE-IDENTITY, OBJECT-TYPE, -- OBJECT-IDENTITY, experimental, Integer32 FROM SNMPv2-SMI TEXTUAL-CONVENTION FROM SNMPv2-TC MODULE-COMPLIANCE, OBJECT-GROUP FROM SNMPv2-CONF usmUserEntry FROM SNMP-USER-BASED-SM-MIB SnmpAdminString FROM SNMP-FRAMEWORK-MIB;snmpUsmDHObjectsMIB MODULE-IDENTITY LAST-UPDATED "200003060000Z" -- 6 March 2000, Midnight ORGANIZATION "Excite@Home" CONTACT-INFO "Author: Mike StJohns Postal: Excite@Home 450 Broadway Redwood City, CA 94063 Email: stjohns@corp.home.net Phone: +1-650-556-5368" DESCRIPTION "The management information definitions for providing forward secrecy for key changes for the usmUserTable, and for providing a method for 'kickstarting' access to the agent via a Diffie-Helman key agreement." REVISION "200003060000Z" DESCRIPTION "Initial version published as RFC 2786." ::= { experimental 101 } -- IANA DHKEY-CHANGE 101-- Administrative assignmentsusmDHKeyObjects OBJECT IDENTIFIER ::= { snmpUsmDHObjectsMIB 1 }usmDHKeyConformance OBJECT IDENTIFIER ::= { snmpUsmDHObjectsMIB 2 }-- Textual conventionsSt. Johns Experimental [Page 6]RFC 2786 Diffie-Helman USM Key March 2000DHKeyChange ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "Upon initialization, or upon creation of a row containing an object of this type, and after any successful SET of this value, a GET of this value returns 'y' where y = g^xa MOD p, and where g is the base from usmDHParameters, p is the prime from usmDHParameters, and xa is a new random integer selected by the agent in the interval 2^(l-1) <= xa < 2^l < p-1. 'l' is the optional privateValueLength from usmDHParameters in bits. If 'l' is omitted, then xa (and xr below) is selected in the interval 0 <= xa < p-1. y is expressed as an OCTET STRING 'PV' of length 'k' which satisfies k y = SUM 2^(8(k-i)) PV'i i=1 where PV1,...,PVk are the octets of PV from first to last, and where PV1 <> 0. A successful SET consists of the value 'y' expressed as an OCTET STRING as above concatenated with the value 'z'(expressed as an OCTET STRING in the same manner as y) where z = g^xr MOD p, where g, p and l are as above, and where xr is a new random integer selected by the manager in the interval 2^(l-1) <= xr < 2^l < p-1. A SET to an object of this type will fail with the error wrongValue if the current 'y' does not match the 'y' portion of the value of the varbind for the object. (E.g. GET yout, SET concat(yin, z), yout <> yin). Note that the private values xa and xr are never transmitted from manager to device or vice versa, only the values y and z.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -