⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rfc2892.txt

📁 著名的RFC文档,其中有一些文档是已经翻译成中文的的.
💻 TXT
📖 第 1 页 / 共 5 页
字号:
Network Working Group                                          D. TsiangRequest for Comments: 2892                                     G. SuwalaCategory: Informational                                    Cisco Systems                                                             August 2000                    The Cisco SRP MAC Layer ProtocolStatus of this Memo   This memo provides information for the Internet community.  It does   not specify an Internet standard of any kind.  Distribution of this   memo is unlimited.Copyright Notice   Copyright (C) The Internet Society (2000).  All Rights Reserved.Abstract   This document specifies the MAC layer protocol, "Spatial Reuse   Protocol" (SRP) for use with ring based media. This is a second   version of the protocol (V2).   The primary requirements for SRP are as follows:   -  Efficient use of bandwidth using:          spatial reuse of bandwidth          local reuse of bandwidth          minimal protocol overhead   -  Support for priority traffic   -  Scalability across a large number of nodes or stations attached to      a ring   -  "Plug and play" design without a software based station management      transfer (SMT) protocol or ring master negotiation as seen in      other ring based MAC protocols [1][2]   -  Fairness among nodes using the ring   -  Support for ring based redundancy (error detection, ring wrap,      etc.) similar to that found in SONET BLSR specifications.   -  Independence of physical layer (layer 1) media type.   This document defines the terminology used with SRP, packet formats,   the protocol format, protocol operation and associated protocol   finite state machines.Tsiang & Suwala              Informational                      [Page 1]RFC 2892            The Cisco SRP MAC Layer Protocol         August 2000Table of Contents    1.  Differences between SRP V1 and V2 .......................  3    2.  Terms and Taxonomy ......................................  4        2.1.  Ring Terminology ..................................  4        2.2.  Spatial Reuse .....................................  5        2.3.  Fairness ..........................................  6        2.4.  Transit Buffer ....................................  7    3.  SRP Overview ............................................  8        3.1.  Receive Operation Overview ........................  8        3.2.  Transmit Operation Overview .......................  8        3.3.  SRP Fairness Algorithm (SRP-fa) Overview ..........  9        3.4.  Intelligent Protection Switching (IPS) Protocol              Overview ..........................................  9    4.  Packet Formats .......................................... 13        4.1.  Overall Packet Format ............................. 13        4.2.  Generic Packet Header Format ...................... 14             4.2.1.  Time To Live (TTL) ......................... 14             4.2.2.  Ring Identifier (R) ........................ 15             4.2.3.  Priority Field (PRI) ....................... 15             4.2.4.  MODE ....................................... 15             4.2.5.  Parity Bit (P-bit) ......................... 16             4.2.6.  Destination Address ........................ 16             4.2.7.  Source Address ............................. 16             4.2.8.  Protocol Type .............................. 16        4.3.  SRP Cell Format ................................... 16        4.4.  SRP Usage Packet Format ........................... 17        4.5.  SRP Control Packet Format ......................... 18             4.5.1.  Control Ver ................................ 19             4.5.2.  Control Type ............................... 19             4.5.3.  Control TTL ................................ 19             4.5.4.  Control Checksum ........................... 19             4.5.5.  Payload .................................... 20             4.5.6.  Addressing ................................. 20        4.6.  Topology Discovery ................................ 20             4.6.1.  Topology Length ............................ 22             4.6.2.  Topology Originator ........................ 22             4.6.3.  MAC bindings ............................... 22             4.6.4.  MAC Type Format ............................ 22        4.7.  Intelligent Protection Switching (IPS) ............ 23             4.7.1.  Originator MAC Address ..................... 23             4.7.2.  IPS Octet .................................. 24        4.8.  Circulating packet detection (stripping) .......... 24    5.  Packet acceptance and stripping ......................... 25        5.1.  Transmission and forwarding with priority ......... 27        5.2.  Wrapping of Data .................................. 28    6.  SRP-fa Rules Of Operation ............................... 28        6.1.  SRP-fa pseudo-code ................................ 30Tsiang & Suwala              Informational                      [Page 2]RFC 2892            The Cisco SRP MAC Layer Protocol         August 2000        6.2.  Threshold settings ................................ 32    7.  SRP Synchronization ..................................... 32        7.1.  SRP Synchronization Examples ...................... 33    8.  IPS Protocol Description ................................ 34        8.1.  The IPS Request Types ............................. 35        8.2.  SRP IPS Protocol States ........................... 36             8.2.1.  Idle ....................................... 36             8.2.2.  Pass-through ............................... 36             8.2.3.  Wrapped .................................... 36        8.3.  IPS Protocol Rules ................................ 36             8.3.1.  SRP IPS Packet Transfer Mechanism .......... 36             8.3.2.  SRP IPS Signaling and Wrapping Mechanism ... 37        8.4.  SRP IPS Protocol Rules ............................ 38        8.5.  State Transitions ................................. 41        8.6.  Failure Examples .................................. 41             8.6.1.  Signal Failure - Single Fiber Cut Scenario . 41             8.6.2.  Signal Failure - Bidirectional Fiber Cut                     Scenario ................................... 43             8.6.3.  Failed Node Scenario ....................... 45             8.6.4.  Bidirectional Fiber Cut and Node Addition             Scenarios .......................................... 47    9.  SRP over SONET/SDH ...................................... 48   10.  Pass-thru mode .......................................... 49   11.  References .............................................. 50   12.  Security Considerations ................................. 50   13.  IPR Notice .. ........................................... 50   14.  Acknowledgments ......................................... 50   15.  Authors' Addresses ...................................... 51   16.  Full Copyright Statement ................................ 521.  Differences between SRP V1 and V2   This document pertains to SRP V2. SRP V1 was a previously published   draft specification. The following lists V2 feature differences from   V1:   -  Reduction of the header format from 4 bytes to 2 bytes.   -  Replacement of the keepalive packet with a new control packet that      carries usage information in addition to providing a keepalive      function.   -  Change bit value of inner ring to be 1 and outer to be 0.   -  Reduction in the number of TTL bits from 11 to 8.   -  Removal of the DS bit.Tsiang & Suwala              Informational                      [Page 3]RFC 2892            The Cisco SRP MAC Layer Protocol         August 2000   -  Change ordering of CRC transmission to be most significant octet      first (was least significant octet in V1).  The SRP CRC is now the      same as in [5].   -  Addition of the SRP cell mode to carry ATM cells over SRP.   -  Changes to the SRP-fa to increase the usage field width and to      remove the necessity of adding a fixed constant when propagating      usage messages.2.  Terms and Taxonomy2.1.  Ring Terminology   SRP uses a bidirectional ring. This can be seen as two symmetric   counter-rotating rings. Most of the protocol finite state machines   (FSMs) are duplicated for the two rings.   The bidirectional ring allows for ring-wrapping in case of media or   station failure, as in FDDI [1] or SONET/SDH [3]. The wrapping is   controlled by the Intelligent Protection Switching (IPS) protocol.   To distinguish between the two rings, one is referred to as the   "inner" ring, the other the "outer" ring. The SRP protocol operates   by sending data traffic in one direction (known as "downstream") and   it's corresponding control information in the opposite direction   (known as "upstream") on the opposite ring. Figure 1 highlights this   graphically.Tsiang & Suwala              Informational                      [Page 4]RFC 2892            The Cisco SRP MAC Layer Protocol         August 2000   FIGURE 1. Ring Terminology                                       {outer_data                                -----   inner_ctl}               ---------------->| N |-----------------              |  ---------------| 1 |<--------------  |              | |  {inner_data  -----               | |              | |   outer_ctl}                      | |             -----                                 -----             | N |                                 | N |             | 6 |                                 | 2 |             -----                                 -----              ^ |                                   ^ |            o | |                                 i | |            u | |                                 n | |            t | |                                 n | |            e | |                                 e | |            r | |                                 r | |              | v                                   | v             -----                                 -----             | N |                                 | N |             | 5 |                                 | 3 |             -----                                 -----              | |                                   | |              | |               -----               | |              |  -------------->| N |---------------  |               -----------------| 4 |<----------------                                -----2.2.  Spatial Reuse   Spatial Reuse is a concept used in rings to increase the overall   aggregate bandwidth of the ring. This is possible because unicast   traffic is only passed along ring spans between source and   destination nodes rather than the whole ring as in earlier ring based   protocols such as token ring and FDDI.   Figure 2 below outlines how spatial reuse works. In this example,   node 1 is sending traffic to node 4, node 2 to node 3 and node 5 to   node 6. Having the destination node strip unicast data from the ring   allows other nodes on the ring who are downstream to have full access   to the ring bandwidth. In the example given this means node 5 has   full bandwidth access to node 6 while other traffic is being   simultaneously transmitted on other parts of the ring.Tsiang & Suwala              Informational                      [Page 5]RFC 2892            The Cisco SRP MAC Layer Protocol         August 20002.3.  Fairness   Since the ring is a shared media, some sort of access control is   necessary to ensure fairness and to bound latency. Access control can   be broken into two types which can operate in tandem:      Global access control - controls access so that everyone gets a      fair share of the global bandwidth of the ring.      Local access control - grants additional access beyond that      allocated globally to take advantage of segments of the ring that      are less than fully utilized.   As an example of a case where both global and local access are   required, refer again to Figure 2. Nodes 1, 2, and 5 will get 1/2 of   the bandwidth on a global allocation basis. But from a local   perspective, node 5 should be able to get all of the bandwidth since   its bandwidth does not interfere with the fair shares of nodes 1 and   2.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -