📄 rfc192.txt
字号:
Network Working Group R. WatsonRequest for Comments: 192 SRI-ARCNIC: 7137 12 July 1971 Some Factors which a Network Graphics Protocol must Consider After reading some of the RFC's on a network graphics protocol it seems that many are not providing general enough mechanisms to handle attention handling, picture structure, and other higher level processes involved in interactive graphics. Therefore for what it is worth I am sending out these rough introductory notes which contain ideas that I think any network graphics protocol must come to grips with. The network graphics protocol should allow one to operate the most sophisticated system with more general data structures and concepts than those described in these notes and allow very simple systems to function also.Introduction It is our contention that, if computer graphics is to be widely useful, the graphics terminals must be just another type of terminal on a timesharing system with minimal special privileges. In these brief notes we outline the basic features which we feel must be available in a graphics support package to allow easy interactive graphics application programming. If one examines the types of tasks in industry, government and universities which can avail themselves of timesharing support from graphics consoles, one can estimate that the large majority can effectively utilize quite simple terminals such as those employing storage tubes. I would estimate 75% of the required terminals to fall in this class. Another 15-20% of terminals may require higher response and some simple realtime picture movement, thus requiring simple refresh displays. The remainder of terminals are needed for high payout tasks requiring all the picture processing power one can make available. In this talk we are not considering support for this latter class of applications.MAIN ASSUMPTIONS AND REQUIREMENTS FOR SYSTEM DESIGN The main assumptions and requirements underlying the interactive graphics are the following:Watson [Page 1]RFC 192 Some Factors which a Network Graphics 12 July 1971 1) The user of the graphics terminal should be just another timesharing system user. 2) The graphics software support should interface to existing timesharing programs. 3) The software support should allow technicians, engineers, scientist, and business analysts as well as professional programmers to easily create applications using a graphic terminal. 4) The software support should easily allow use of new terminals and types of terminals as they come on the market. 5) The software support should be expandable as experience indicates new facilities are required. 6) The software support should be portable from one timesharing service to another. 7) Some form of hardcopy should be available.MULTILEVEL MODULAR APPROACH TO SYSTEM DESIGN If one wants to create as system which is easy to use by inexperienced programmers and ultimately non-programmers, one needs to provide powerful problem-oriented aids to program writing. One has to start with the primitive machine language used to command the graphics system hardware and build upward. The philosophy of design chosen is the one becoming more common in the computer industry, which is to design increasingly more powerful levels of programming support, each of which interfaces to its surrounding levels and builds on the lower levels. It is important to try to design these levels more or less at the same time so that the experience with each will feed back on the designs of the others before they are frozen and difficult to change. One can recognize five basic levels: 1) The basic system level: This level provides facilities for use of the terminal by the assembly language programmers.Watson [Page 2]RFC 192 Some Factors which a Network Graphics 12 July 1971 2) The problem programming language level: This level of support provides powerful facilities for interactive graphics programming from the commonly used higher level programming languages. 3) The picture editor or drawing system: This level of support allows pictures to be drawn and linkage to these pictures and application programs. Data management support for interactive programming: This level of support is to provide facilities to aid creation and manipulation of data structures relating data associated with the pictures and the application. 5) The application program level:A REVIEW OF TERMINAL HARDWARE CHARACTERISTICS OF CONCERN TO THE USERS There are two basic kinds of general purpose cathode ray tube display systems available on the present market. Within each class there are alternate forms and techniques of implementation which we do not discuss here. One type is called a "refresh display". The other type is called a "storage tube display". The refresh display must keep repainting the picture on the screen at rates of from 20-60 times per second. Commands which instruct the system how to draw the picture are stored in a memory. The storage tube display on the other hand, through its internal method of construction can maintain on the face of the display a picture for practical purposes, indefinitely once drawn.REFRESHED DISPLAYS There are limits to how much information can be drawn on the face of refreshed display before the time required to paint it forces the refresh rate below a critical value and the picture appears to flicker. This quantity of information is a function of the type of phosphor on the tube face, the speed of display system in drawing lines and characters, and the ambient light level in the room. Refresh display systems range in cost upwards from $10,000 to several hundred thousand dollars. Refresh displays, because the picture can be changed every few milliseconds by simply altering its command list (often called a display file or display buffer), allow the picture parts to be moved on the face of the screen either under operator control or computer control. Objects on the screen can be selectively erased without affecting other objects on the screen.Watson [Page 3]RFC 192 Some Factors which a Network Graphics 12 July 1971 These characteristics make refreshed displays suitable for a wide range of applications.STORAGE TUBE DISPLAYS Storage tube based displays can display a large amount of information without a flicker, and generally cost under $20,000. Present systems suffer from some limitations, however. They cannot be selectively erased. If an object is to be moved or deleted from the screen, the entire screen must be erased and then the new picture can be redrawn. Because this type of display generally operates over a communication line, the speed of the line may seriously restrict the amount of interaction if much erasing and redrawing is required. The graphics software concepts to be described can be used with both a storage tube and refreshed display, although some features are only appropriate to the refreshed type of display. The important point is that new storage tube technologies insure that this class of terminal will be with us a long time.INPUT DEVICES It is necessary to allow a console user to communicate with the graphics system. This is done through a keyboard and through specialized graphic input devices, the Light Pen, the Tablet, the SRI "Mouse", and the "Joy Stick". These latter devices enable a console user to point to vectors and characters displayed on the CRT and to input position information to the graphics system. Comparison of the Graphics Input Devices -- Analog Comparitors The Joy Stick, Mouse, and Tablet are similar in that they both generate a two dimensional position address without the aid of the display processor, but cannot be directly used to identify displayed objects. The light pen-display processor hardware combination and its associated software, on the other hand, can easily sense and identify displayed vectors and characters but does not generate directly any position data. A "tracking cross" program is used to obtain the position data for the light pen. To obtain the pointing capability for the Joy Stick, Mouse, and Tablet, we can use a pair of analog comparitors which generate interrupts when the beam is drawn on the CRT lies within a rectangular "viewing window" in much the same way that the lightWatson [Page 4]RFC 192 Some Factors which a Network Graphics 12 July 1971 pen generates interrupts when a beam is drawn under its circular viewing area. These comparitors sense the x and y axis drive voltages of the display analog bus. A comparator will generate an output signal when the drive voltage is between two limits which may be set using special display processor commands. When both comparitors generate a signal simultaneously, the output voltages on the analog buss correspond to a beam position within the rectangular viewing window. The position of viewing window is set based on the position of the pen, Mouse, or Joy Stick. We can also use software to simulate the effect of hardware comparators. Hardware comparators cannot be use with storage tube displays and, therefore, a software simulation is required. This simulation is discussed later in these notes. The light pen can be used only with a refreshed display. The other types of devices can be used with present storage tube displays and refreshed displays. They are used with storage tube displays which have hardware which produces on the screen a dot, cross or other cursor, indicating the x, y position of the device. The reason one can move this cursor around it that the cursor is created using special techniques to avoid its storing on the screen.USER SOFTWARE REQUIREMENTS The user requirements on a timesharing system based interactive graphics system are the following: 1) The user should have available a language for creating a computer representation of the picture to be displayed. This language should allow more complex pictures to be built up from simpler structures. 2) The computer representation of the picture must allow easy
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -