📄 rfc2922.txt
字号:
These packets provide the device ID of the source of the packet and may also indicate out which port the packet was transmitted. When receiving these packets, devices typically are required to identify on which port that packet was received. Passive mechanisms take advantage of data on the network to populate the topology MIB. By maintaining a list of device identifiers seen on each port of all devices in a network, it is possible to populate the PTOPO-MIB. Many instances of a particular topology mechanism may be in use on a given network, and many different mechanisms may be employed. In some cases, multiple mechanisms may overlap across part of the physical topology with individual ports supporting more than one topology mechanism. In general, this simply allows the port to collect more robust topology information. Agents may need to be configured so that they know which mechanism(s) are in use on any given portion of the network. Most topology mechanisms need to be bounded to a subset of the network to contain their impact on the network and limit the size of topology tables maintained by the agent. Topology mechanisms are often naturally bounded by the media on which they run (e.g. FDDI topology mechanism) or by routers in the network that intentionally block the mechanism from crossing into other parts of the network.3.3. Future Considerations While the framework presented here is focused on physical topology, it may well be that the topology mechanisms and MIB described could be extended to include logical topology information as well. That is not a focus of this memo.4. Physical Topology MIB This section describes and defines the Physical Topology MIB.Bierman & Jones Informational [Page 7]RFC 2922 Physical Topology MIB September 20004.1. Persistent Identifiers The PTOPO MIB utilizes non-volatile identifiers to distinguish individual chassis and port components. These identifiers are associated with external objects in order to relate topology information to the existing managed objects. In particular, an object from the Entity MIB [RFC2737] or Interfaces MIB [RFC2233] can be used as the 'reference-point' for a connection component identifier. The Physical Topology MIB uses two identifier types pertaining to the PTOPO MIB: - globally unique chassis identifiers. - port identifiers; unique only within the chassis which contains the port. Identifiers are stored as OCTET STRINGs, which are limited to 32 bytes in length, This supports flexible naming conventions and constrains the non-volatile storage requirements for an agent.4.2. Relationship to Entity MIB The first version of the Entity MIB [RFC2037] allows the physical component inventory and hierarchy to be identified. However, this MIB does not provide persistent component identifiers, which are required for the PTOPO MIB. Therefore, version 2 of the Entity MIB [RFC2737] is required to support that feature. Specifically, the entPhysicalAlias object is utilized as a persistent chassis identifier. For agents implementing the PTOPO MIB, this new object must be used to represent the chassis identifier. Port identifiers can be based on the entPhysicalAlias object associated with the port, but only if the port is not represented as an interface in the ifXTable. Implementation of the entPhysicalGroup [RFC2737] and the entPhysicalAlias object [RFC2737] are mandatory for SNMP agents which implement the PTOPO MIB. No other objects must be implemented from these MIBs to support the physical topology function.Bierman & Jones Informational [Page 8]RFC 2922 Physical Topology MIB September 20004.3. Relationship to Interfaces MIB The PTOPO MIB requires a persistent identifier for each port. The Interfaces MIB [RFC2233] provides a standard mechanism for managing network interfaces. Unfortunately, not all ports which may be represented in the PTOPO MIB are also represented in the Interfaces MIB (e.g., repeater ports). For agents which implement the PTOPO MIB, for each port also represented in the Interfaces MIB, the agent must use the associated ifAlias value for the port identifier. For each port not represented in the Interfaces MIB, the associated entPhysicalAlias value must be used for the port identifier. Note that the PTOPO MIB requires only minimal support from the Interfaces MIB. Specifically, the ' ifGeneralInformationGroup' level of conformance must be provided for each port also identified in the PTOPO MIB. The agent may choose to support these objects with read-only access, as specified in the conformance section of the Interfaces MIB.4.4. Relationship to RMON-2 MIB The RMON-2 MIB [RFC2021] contains address mapping information which can be integrated with physical topology information. The physical ports identified in a physical topology MIB can be related to the MAC and network layer addresses found in the addressMapTable.4.5. Relationship to Bridge MIB The Bridge MIB [RFC1493] contains information which may relate to physical ports represented in the ptopoConnTable. Entries in the dot1dBasePortTable and dot1dStpPortTable can by related to physical ports represented in the PTOPO MIB. Also, bridge port MAC addresses may be used as chassis and port identifiers in some situations.4.6. Relationship to Repeater MIB The Repeater MIB [RFC2108] contains information which may relate to physical ports represented in the PTOPO MIB. Entries in the rptrPortTable and rptrMonitorPortTable can by related to physical ports represented in the ptopoConnTable. Entries in the rptrInfoTable and rptrMonTable can be related to repeater backplanes possibly represented in the ptopoConnTable.Bierman & Jones Informational [Page 9]RFC 2922 Physical Topology MIB September 20004.7. MIB Structure The PTOPO MIB contains three MIB object groups: - ptopoData Exposes physical topology data learned from discovery protocols and/or manual configuration. - ptopoGeneral Contains general information regarding PTOPO MIB status. - ptopoConfig Contains configuration variables for the PTOPO MIB agent function.4.7.1. ptopoData Group This group contains a single table to identity physical topology data. The ptopoConnTable contains information about the connections learned or configured on behalf of the PTOPO MIB SNMP Agent.4.7.2. ptopoGeneral Group This group contains some scalar objects to report the status of the PTOPO MIB information currently known to the SNMP Agent. The global last change time, and table add and delete counters allow an NMS to set threshold alarms to trigger PTOPO polling.4.7.3. ptopoConfig Group This group contains tables to configure the behavior of the physical topology function. The transmission of ptopoLastChange notifications can be configured using the ptopoConfigTrapInterval scalar MIB object.4.8. Physical Topology MIB DefinitionsPTOPO-MIB DEFINITIONS ::= BEGINIMPORTS MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE, Integer32, Counter32, mib-2 FROM SNMPv2-SMI TEXTUAL-CONVENTION, AutonomousType, RowStatus, TimeStamp, TruthValue FROM SNMPv2-TC MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUPBierman & Jones Informational [Page 10]RFC 2922 Physical Topology MIB September 2000 FROM SNMPv2-CONF TimeFilter FROM RMON2-MIB PhysicalIndex FROM ENTITY-MIB AddressFamilyNumbers FROM IANA-ADDRESS-FAMILY-NUMBERS-MIB;ptopoMIB MODULE-IDENTITY LAST-UPDATED "200009210000Z" ORGANIZATION "IETF; PTOPOMIB Working Group" CONTACT-INFO "PTOPOMIB WG Discussion: ptopo@3com.com Subscription: majordomo@3com.com msg body: [un]subscribe ptopomib Andy Bierman Cisco Systems Inc. 170 West Tasman Drive San Jose, CA 95134 408-527-3711 abierman@cisco.com Kendall S. Jones Nortel Networks 4401 Great America Parkway Santa Clara, CA 95054 408-495-7356 kejones@nortelnetworks.com" DESCRIPTION "The MIB module for physical topology information." REVISION "200009210000Z" DESCRIPTION "Initial Version of the Physical Topology MIB. This version published as RFC 2922." ::= { mib-2 79 }ptopoMIBObjects OBJECT IDENTIFIER ::= { ptopoMIB 1 }-- MIB groupsptopoData OBJECT IDENTIFIER ::= { ptopoMIBObjects 1 }ptopoGeneral OBJECT IDENTIFIER ::= { ptopoMIBObjects 2 }ptopoConfig OBJECT IDENTIFIER ::= { ptopoMIBObjects 3 }-- textual conventionsBierman & Jones Informational [Page 11]RFC 2922 Physical Topology MIB September 2000PtopoGenAddr ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "The value of an address." SYNTAX OCTET STRING (SIZE (0..20))PtopoChassisIdType ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "This TC describes the source of a chassis identifier. The enumeration 'chasIdEntPhysicalAlias(1)' represents a chassis identifier based on the value of entPhysicalAlias for a chassis component (i.e., an entPhysicalClass value of 'chassis(3)'). The enumeration 'chasIdIfAlias(2)' represents a chassis identifier based on the value of ifAlias for an interface on the containing chassis. The enumeration 'chasIdPortEntPhysicalAlias(3)' represents a chassis identifier based on the value of entPhysicalAlias for a port or backplane component (i.e., entPhysicalClass value of 'port(10)' or 'backplane(4)'), within the containing chassis. The enumeration 'chasIdMacAddress(4)' represents a chassis identifier based on the value of a unicast source MAC address (encoded in network byte order and IEEE 802.3 canonical bit order), of a port on the containing chassis. The enumeration 'chasIdPtopoGenAddr(5)' represents a chassis identifier based on a network address, associated with a particular chassis. The encoded address is actually composed of two fields. The first field is a single octet, representing the IANA AddressFamilyNumbers value for the specific address type, and the second field is the PtopoGenAddr address value." SYNTAX INTEGER { chasIdEntPhysicalAlias(1), chasIdIfAlias(2), chasIdPortEntPhysicalAlias(3), chasIdMacAddress(4), chasIdPtopoGenAddr(5) }PtopoChassisId ::= TEXTUAL-CONVENTION STATUS currentBierman & Jones Informational [Page 12]RFC 2922 Physical Topology MIB September 2000 DESCRIPTION "This TC describes the format of a chassis identifier string. Objects of this type are always used with an associated PtopoChassisIdType object, which identifies the format of the particular PtopoChassisId object instance. If the associated PtopoChassisIdType object has a value of 'chasIdEntPhysicalAlias(1)', then the octet string identifies a particular instance of the entPhysicalAlias object for a chassis component (i.e., an entPhysicalClass value of 'chassis(3)'). If the associated PtopoChassisIdType object has a value of 'chasIdIfAlias(2)', then the octet string identifies a particular instance of the ifAlias object for an interface on the containing chassis. If the associated PtopoChassisIdType object has a value of 'chasIdPortEntPhysicalAlias(3)', then the octet string identifies a particular instance of the entPhysicalAlias object for a port or backplane component within the containing chassis. If the associated PtopoChassisIdType object has a value of
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -