📄 rfc2381.txt
字号:
specs) for indicating which subset of the traffic is to be transported. Implementation of this feature is therefore completely network specific. The policing and scheduling mechanisms may simply be parameterized with the (lower) receiver rate, resulting in the random loss of traffic sufficient to make up the difference in rates. The receiver TSpec rate describes the traffic for which resources are to be reserved, and may be used for policing, while the RSpec rate (which cannot be smaller) is used (perhaps in an implementation specific way) to modify the allocated service bandwidth in order to reduce the delay. When mapping Guaranteed Service onto a rtVBR VC, the ATM traffic descriptor parameters (PCR, SCR, MBS) can be set cannonically as: PCR = p_r SCR = R MBS = b_r. There are a number of conditions that may lead to different choices. The following discussion is not intended to set hard requirements, but to provide some interpretation and guidance on the bounds of possible parameter mappings. The ingress edge device generally includes a buffer preceding the ATM network interface. This buffer can be used to absorb bursts that fall within the IP-level TSpec, but not within the ATM traffic descriptor. The minimal REQUIREMENT for guaranteed service is that the delay in this buffer MUST NOT exceed b/R, and the delays within the ATM network MUST be accurately accounted for in the values of Adspec parameters C and D advertised by the ingress router (see Section 3.3 below). If either an edge device buffer of size b_r exists or the ATM maximum burst size (MBS) parameter is at least b_r, then the various rate parameters will generally exhibit the following relationship:Garrett & Borden Standards Track [Page 15]RFC 2381 Interoperation of CLS and GS with ATM August 1998 r_r <= SCR <= R <= PCR <= APB <= line rate r_r <= p_r <= APB APB refers to the General Characterization Parameter, AVAILABLE_PATH_BANDWIDTH, which is negotiated in the Adspec portion of the PATH message. APB reflects the narrowest bottleneck rate along the path, and so is always no larger than the local line rate. The receiver SHOULD choose a peak rate no greater than APB for the reservation to be accepted, although the source peak rate, p_s, could be higher, as the source does not know the value of APB. There is no advantage to allocating any rate above APB of course, so it is an upper bound for all the other parameters. We might normally expect to find R <= p_r, as would be necessary for the simple mapping of PCR = p_r, SCR = R given above. However, a receiver is free to choose R > p_r to lower the GS delay [8]. In this case, PCR cannot be set below R, because a burst of size b arriving into the buffer MUST be cleared at rate R to keep the first component of GS delay down to b/R. So here we will have PCR = R. It may seem that PCR = p_r would be sufficient to avoid buffer overflow, since data is generated at the source at a rate bounded by p_r. However, setting PCR < R, can result in the delay bound advertised by C and D not being met. Also, traffic is always subject to jitter in the network, and the arrival rate at a network element can exceed p_r for short periods of time. In the case R <= p_r, we may still choose PCR such that R <= PCR < p_r. The edge device buffer is then necessary (and sufficient) to absorb the bursts (limited to size b_r + C_sum + R D_sum) which arrive faster than they depart. For example, it may be the case that the cost of the ATM VC depends on PCR, while the cost of the Internet service reservation is not strongly dependent on the IP-level peak rate. The user may then have an incentive to set p_r to APB, while the operator of the IP/ATM edge router has an incentive to reduce PCR as much as possible. This may be a realistic concern, since the charging models of IP and ATM are historically different as far as usage sensitivity, and the value of p_r, if set close to APB, could be many times the nominal GS allocated rate of R. Thus, we can set PCR to R, with a buffer of size b_r + C_sum + R D_sum, with no loss of traffic, and no violation of the GS delay bound. A more subtle, and perhaps controversial case is where we set SCR to a value below R. The major feature of the GS service is to allow a receiver to specify the allocated rate R to be larger than the rate r_r sufficient to transport the traffic, in order to lower the queueing delay (roughly) from b/r + C_TOT/r + D_TOT to b/R + C_TOT/R + D_TOT. To effectively allocate bandwidth R to the flow, we set SCRGarrett & Borden Standards Track [Page 16]RFC 2381 Interoperation of CLS and GS with ATM August 1998 to match R. (Note it is unnecessary in any case to set SCR above R, so the relation, SCR <= R, is still true.) It is possible to set SCR to a value as low as r_r, without violating the delay bounds or overflowing the edge device buffer. With PCR = R, a burst of size b will be buffered and sent into the ATM network at rate R, so the last byte suffers delay only b/R. Any further traffic will be limited to rate r_r, which is SCR, so with the arriving and departing rates matched, its delay will also be no more than b/R. While this scenario meets the GS service requirements, the penalty for allocating SCR = r_r rather than R is that the delay in the ATM network will have a component of MBS/SCR, which will be b/r rather than b/R, contained in the D term advertised for the ATM sub-network (see further discussion in Section 3.3 below). It is also true that allocating r instead of R in a portion of the path is rather against the spirit of GS. As mentioned above, this mapping may however be useful in practice in the case where pricing in the ATM network leads to different incentives in the tradeoff between delay and bandwidth than those of the user who buys IP integrated services. Another point of view on parameter mapping suggests that SCR may merely reflect the traffic description, hence SCR = r_r, while the service requirement is expressed in the QoS parameter as CDV = b/R. Thus the ATM network may internally allocate bandwidth R, but it is free to use other methods as well to achieve the delay constraint. Mechanisms such as statistical flow/connection aggregation may be implemented in the ATM network and hidden from the user (or parameter mapping module in the edge router) which sees only the interface implemented in the signalled parameters. Note that this discussion considers an edge device buffer size of b_r. In practice, it may be necessary for the AAL/segmentation module to buffer M bytes in converting packets to cells. Also an additional amount of buffer equal to C_sum + R D_sum is generally necessary to absorb jitter imposed by the upstream network [8]. With ATM, it is possible to have little or no buffer in the edge router, because the ATM VC can be set to accept bursts at peak rate. This may be unusual, since the edge router normally has enough buffer to absorb bursts according to the TSpec token bucket parameters. We consider two cases. First, if PCR >= p_r, then MBS can be set to b_r and no buffering is necessary to absorb non-excessive bursts. The extra buffering needed to absorb jitter can also be transferred to MBS. This effectively moves the buffering across the UNI into the ATM network.Garrett & Borden Standards Track [Page 17]RFC 2381 Interoperation of CLS and GS with ATM August 1998 For completeness, we consider an edge router with no burst-absorbing buffers and an MBS parameter of approximately zero. In this case it is sufficient to set the rate parameters to PCR = SCR = max (R, p_r). This amounts to peak-rate allocation of bandwidth, which will not usually be very cost effective. This case may be relevant where the IP routers and ATM switches differ substantially in their buffering designs. IP-level users may typically specify much larger burst parameters than can be handled in the ATM subnet. Peak-rate bandwidth allocation provides a means to work around this problem. It is also true that intermediate tradeoffs can be formulated, where the burst-absorbing buffer is less than b bytes, and SCR is set above R and below p_r. Note that jitter-absorbing buffers (C_sum + R D_sum) can not be avoided, generally, by increasing ATM rates, unless SCR is set to exceed the physical line rate(s) into the edge device for the flow. For GS over CBR, the value of PCR may be mapped to the RSpec rate R, if the edge device has a buffer of size b_r + C_sum + R D_sum. With little or no burst buffering, the requirements resemble the zero- buffer case above, and we have PCR = max (R, p_r). Additional buffers sufficient to absorb network jitter, given by C_sum, D_sum, MUST always be provided in the edge router, or in the ATM network via MBS.2.5.2 Translating Traffic Descriptors for Controlled Load Service The Controlled Load service TSpec has a peak rate, p, a "token bucket" rate, r, and a corresponding token bucket depth parameter, b. The receiver TSpec values are used to determine resource allocation, and a simple mapping for the nrtVBR service category is given by, PCR = p_r SCR = r_r MBS = b_r. The discussions in the preceding section on using edge device buffers to reduce PCR and/or MBS apply generally to the CLS over nrtVBR case as well. Extra buffers to accommodate jitter accumulated (beyond the b_r burst size allowed at the source) MUST be provided. For CLS, there are no Adspec parameters C and D, so the dimensioning of such buffers is an implementation design issue. For ABR VCs, the TSpec rate r_r is used to set the minimum cell rate (MCR) parameter. Since there is no corresponding signalled bucket depth parameter, the edge device SHOULD have a buffer of at least b_r bytes, plus additional buffers to absorb jitter. With ABR, the ATM network can quickly throttle the actual transfer rate down to MCR, so a source transmitting above that rate can experience high loss at theGarrett & Borden Standards Track [Page 18]RFC 2381 Interoperation of CLS and GS with ATM August 1998 ingress edge device when the ATM network becomes congested. For CBR, the TSpec rate r_r sets a lower bound on PCR, and again, the available buffering in the edge device SHOULD be adequate to accommodate possible bursts of b_r. The REQUIREMENT for CLS that network delays approximate "best-effort service under unloaded conditions", is interpreted here to mean that it would be sufficient to allocate bandwidth resources so that the last byte of a burst of size b_r sees a delay approximately b_r/r_r. For example, a network element with no cross-traffic, a work conserving scheduler and an output link rate of r_L, might provide delays in the range from M/r_L to b_r/r_L, that are much lower than b_r/r_r. While the access to the full link bandwidth (r_L), as reflected in this example, is a more literal interpretation of delay "under unloaded conditions" for a shared link, an ATM VC may only have access to bandwidth equal to its nominal allocation (some implementation specific function of SCR and PCR).2.5.3 Translating Traffic Descriptors for Best Effort Service For Best Effort service, there is no traffic description. The UBR service category allows negotiation of PCR simply to allow the source to discover the smallest physical bottleneck along the path. The ingress edge router may set PCR to the ATM line rate, and then when the VC setup is complete, the returned value indicates an upper bound on throughput. For UBR service, resources may be allocated for the overall service (i.e., not per-VC) using the (implementation specific) admission control features of the ATM switches. Often a service provider will statically configure large VCs with a certain bandwidth allocation to handle all best effort traffic between two edge routers. ABR, CBR or nrtVBR VCs are appropriate for this design, with traffic parameters set to comfortably accommodate the expected traffic load. See IETF ION specifications for IP over ATM signalling [10, 11].2.6 QoS Classes and Parameters In UNI 3.x the quality of service is indicated by a single parameter called "QoS Class," which is essentially an index to a network specific table of values for the actual QoS parameters. In TM/UNI 4.0 three QoS parameters may be individually signalled, and the signalled values override those implied by the QoS Class, which is still present. These parameters are the Cell Loss Ratio (CLR), Cell Transfer Delay (CTD), and Cell Delay Variation (CDV) [6].Garrett & Borden Standards Track [Page 19]RFC 2381 Interoperation of CLS and GS with ATM August 1998 A network provider may choose to associate other parameters, such as Severely Errored Cell Block Ratio, with a QoS Class definition, but
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -