📄 rfc1466.txt
字号:
RFC 1466 Guidelines for Management of IP Address Space May 1993 assignments of Class A numbers will take place in the near future, any organization petitioning the IR for a Class A network number will be expected to provide a detailed technical justification documenting network size and structure. Class A assignments are at the IANA's discretion.4.2 Class B Previously, organizations were recommended to use a subnetted Class B network number rather than multiple Class C network numbers. Due to the scarcity of Class B network numbers and the underutilization of the Class B number space by most organizations, the recommendation is now to use multiple Class Cs where practical. The restrictions in allocation of Class B network numbers may cause some organizations to expend additional resources to utilize multiple Class C numbers. This is unfortunate, but inevitable if we implement strategies to control the assignment of Class B addresses. The intent of these guidelines is to balance these costs for the greater good of the Internet.4.2.1 Organizations applying for a Class B network number should fulfill the following criteria: 1) the organization presents a subnetting plan which documents more than 32 subnets within its organizational network AND 2) the organization has more than 4096 hosts Organizations applying for a Class B network number must submit an engineering plan that documents its need for a Class B network number. This document must demonstrate that it is unreasonable to engineer its network with a block of class C network numbers. The engineering plan must include how many hosts the network will have within the next 24 months and how many hosts per subnet within the next 24 months. The submitted engineering plans will be held in strict confidence by the Internet registries and will only be used to judge whether an application is justified. If it is deemed that the applicant's engineering plan, including the number of hosts and subnets, does not warrant a Class B assignment, the applicant will be allocated a block of Class C addresses.Gerich [Page 6]RFC 1466 Guidelines for Management of IP Address Space May 1993 There may be some circumstances where the organization is unable to utilize a block of Class C network numbers and does not meet the suggested criteria. In such cases, the engineering plan should clearly demonstrate their inability to utilize a block of Class C network numbers.4.2.2 The IR may allocate small blocks of Class B network numbers to regional registries if so doing will improve the service that is being provided to the community. The IR may issue more specific guidelines for the further assignment of the numbers which will be consistent with the stated guidelines. The IR may require accounting of the block assignment including receipt of the applicants' engineering plans. The IR may audit these engineering plans to confirm that the assignments are consistent with the guidelines.4.3 Class C Section 3 of this document recommends a division of the Class C number space. That division is primarily an administrative division which lays the groundwork for distributed network number registries. This section addresses assignment of network numbers from within regional block assignments. Sub-allocations of the block to sub- registries is beyond the scope of this paper. By default, if an organization requires more than a single Class C, it will be assigned a bit-wise contiguous block from the Class C space allocated for its geographic region. For instance, an European organization which requires fewer than 2048 unique IP addresses and more than 1024 would be assigned 8 contiguous class C network numbers from the number space reserved for European networks, 194.0.0.0 - 195.255.255.255. If an organization from Central America required fewer than 512 unique IP addresses and more than 256, it would receive 2 contiguous class C network numbers from the number space reserved for Central/South American networks, 200.0.0.0 - 201.255.255.255. The IR or the registry to whom the IR has delegated the registration function will determine the number of Class C network numbers to assign to a network subscriber based on the subscriber's 24 month projection of required end system addresses according to the following criteria:Gerich [Page 7]RFC 1466 Guidelines for Management of IP Address Space May 1993 Organization Assignment 1) requires fewer than 256 addresses 1 class C network 2) requires fewer than 512 addresses 2 contiguous class C networks 3) requires fewer than 1024 addresses 4 contiguous class C networks 4) requires fewer than 2048 addresses 8 contiguous class C networks 5) requires fewer than 4096 addresses 16 contiguous class C networks 6) requires fewer than 8192 addresses 32 contiguous class C networks 7) requires fewer than 16384 addresses 64 contiguous class C networks If the subscriber's network is divided into logically distinct LANs across which it would be difficult to use the given number of Class C network numbers, the above criteria may apply on a per-LAN basis. For example, if a subscriber has 600 hosts equally divided across ten Ethernets, the allocation to that subscriber could be ten Class C network numbers; one for each Ethernet. The subscriber would have to support the request with to deviate from the stated criteria with an engineering plan. These criteria are not intended to cause a subscriber to subnet Class C networks unneccessarily. Although, if a subscriber has a small number of hosts per subnet, the subscriber should investigate the feasibility of subnetting Class C network numbers rather than requesting one Class C network number for every subnet. In cases where the lack of Class C subnetting would result in an extravagant waste of address space, the registries may request an engineering plan detailing why subnetting is impossible. If a subscriber has a requirement for more than 4096 unique IP addresses it could conceivably receive a Class B network number. However, there are cases where a subscriber may request a larger block of Class C network numbers. For instance, if an organization requires fewer than 8192 addresses and requests 32 Class C network addresses, the regional registry may honor this request. The maximal block of Class C network numbers that should be assigned to a subscriber consists of 64 contiguous Class C networks. This would correspond to a single IP prefix of 18 bits. Exceptions from the above stated criteria will be determined on a case-by-case basis.5.0 Conclusion This proliferation of class C network numbers may aid in retarding the dispersion of class A and B numbers, but it is sure to accelerate the explosion of routing information carried by Internet routers. Inherent in these recommendations is the assumption that there will be modifications in the technology to support the larger number ofGerich [Page 8]RFC 1466 Guidelines for Management of IP Address Space May 1993 network address assignments due to the decrease in assignments of Class A and B numbers and the proliferation of Class C assignments. Many proposals have been made to address the rapid growth of network assignments and a discussion of those proposals is beyond the scope and intent of this paper. These recommendations for management of the current IP network number space only profess to delay depletion of the IP address space, not to postpone it indefinitely.6.0 Acknowledgements The author would like to acknowledge the substantial contributions made by the members of the following two groups, the Federal Engineering Planning Group (FEPG) and the Intercontinental Engineering Planning Group (IEPG). This document also reflects many concepts expressed at the IETF Addressing BOF which took place in Cambridge, MA in July 1992. In addition, Dan Long (BBN), Jon Postel (ISI), and Yakov Rekhter (T.J. Watson Research Center, IBM Corp.) reviewed this document and contributed to its content. The author thanks those groups and individuals who have been cited for their comments.7.0 References [1] Cerf, V., "IAB Recommended Policy on Distributing Internet Identifier Assignment and IAB Recommended Policy Change to Internet 'Connected' Status", RFC 1174, CNRI, August 1990. [2] Wang, Z., and J. Crowcroft, "A Two-Tier Address Structure for the Internet: A Solution to the Problem of Address Space Exhaustion", RFC 1335, University College London, May 1992.Other related relevant work: [3] "Internet Domain Survey", Network Information Systems Center, SRI International, July 1992. [4] Solensky, F., and F. Kastenholz, "A Revision to IP Address Classifications", Work in Progress, March 1992. [5] Fuller, V., Li, T., Yu, J., and K. Varadhan, "Supernetting: an Address Assignments and Aggregation Strategy", RFC 1338, BARRNet, cisco, Merit, OARnet, June 1992. [6] Rekhter, Y., and Li, T., "Guidelines for IP Address Allocation", Work in Progress, August 1992.Gerich [Page 9]RFC 1466 Guidelines for Management of IP Address Space May 1993 [7] Rekhter, Y. and Topolcic, C., "Exchanging Routing Information across Provider/Subscriber boundaries in CIDR environment", Work in Progress, February 1993.8.0 Security Considerations Security issues are not discussed in this memo.9.0 Author's Address Elise Gerich Merit Network, Inc. 1071 Beal Avenue Ann Arbor, MI 48109-2112 Phone: (313) 936-3335 EMail: epg@MERIT.EDUGerich [Page 10]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -