📄 rfc2990.txt
字号:
create an external view of a compound network as a single subnetwork. From this external perspective the network can be perceived as two boundary service points, ingress and egress. The advantage of this approach is that there exists the potential to eliminate the requirement for per-flow state and per-flow processing on the interior elements of such a network, and instead provide aggregate service responses. One approach is for applications to use RSVP to request that their flows be admitted into the network. If a request is accepted, it would imply that there is a committed resource reservation within the IntServ-capable components of the network, and that the service requirements have been mapped into a compatible aggregate service class within the DiffServ-capable network [7]. The DiffServ core must be capable of carrying the RSVP messages across the DiffServ network, so that further resource reservation is possible within the IntServ network upon egress from the DiffServ environment. The approach calls for the DiffServ network to use per-flow multi-field (MF) classifier, where the MF classification is based on the RSVP- signaled flow specification. The service specification of the RSVP- signaled resource reservation is mapped into a compatible aggregate DiffServ behavior aggregate and the MF classifier marks packets according to the selected behavior. Alternatively the boundary of the IntServ and DiffServ networks can use the IntServ egress to mark the flow packets with the appropriate DSCP, allowing the DiffServ ingress element to use the BA classifier, and dispense with the per- flow MF classifier. A high precision end-to-end QoS model requires that any admission failure within the DiffServ network be communicated to the end application, presumably via RSVP. This allows the application to take some form of corrective action, either by modifying it's service requirements or terminating the application. If the service agreement between the DiffServ network is statically provisioned, then this static information can be loaded into the IntServ boundary systems, and IntServ can manage the allocation of available DiffServ behavior aggregate resources. If the service agreement isHuston Informational [Page 20]RFC 2990 Next Steps for QoS Architecture November 2000 dynamically variable, some form of signaling is required between the two networks to pass this resource availability information back into the RSVP signaling environment.6. Conclusions None of these observations are intended to be any reason to condemn the QoS architectures as completely impractical, nor are they intended to provide any reason to believe that the efforts of deploying QoS architectures will not come to fruition. What this document is intended to illustrate is that there are still a number of activities that are essential precursors to widespread deployment and use of such QoS networks, and that there is a need to fill in the missing sections with something substantial in terms of adoption of additional refinements to the existing QoS model. The architectural direction that appears to offer the most promising outcome for QoS is not one of universal adoption of a single architecture, but instead use a tailored approach where aggregated service elements are used in the core of a network where scalability is a major design objective and use per-flow service elements at the edge of the network where accuracy of the service response is a sustainable outcome. Architecturally, this points to no single QoS architecture, but rather to a set of QoS mechanisms and a number of ways these mechanisms can be configured to interoperate in a stable and consistent fashion.7. Security Considerations The Internet is not an architecture that includes a strict implementation of fairness of access to the common transmission and switching resource. The introduction of any form of fairness, and, in the case of QoS, weighted fairness, implies a requirement for transparency in the implementation of the fairness contract between the network provider and the network's users. This requires some form of resource accounting and auditing, which, in turn, requires the use of authentication and access control. The balancing factor is that a shared resource should not overtly expose the level of resource usage of any one user to any other, so that some level of secrecy is required in this environment The QoS environment also exposes the potential of theft of resources through the unauthorized admission of traffic with an associated service profile. QoS signaling protocols which are intended toHuston Informational [Page 21]RFC 2990 Next Steps for QoS Architecture November 2000 undertake resource management and admission control require the use of identity authentication and integrity protection in order to mitigate this potential for theft of resources. Both forms of QoS architecture require the internal elements of the network to be able to undertake classification of traffic based on some form of identification that is carried in the packet header in the clear. Classifications systems that use multi-field specifiers, or per-flow specifiers rely on the carriage of end-to-end packet header fields being carried in the clear. This has conflicting requirements for security architectures that attempt to mask such end-to-end identifiers within an encrypted payload. QoS architectures can be considered as a means of exerting control over network resource allocation. In the event of a rapid change in resource availability (e.g. disaster) it is an undesirable outcome if the remaining resources are completely allocated to a single class of service to the exclusion of all other classes. Such an outcome constitutes a denial of service, where the traffic control system (routing) selects paths that are incapable of carrying any traffic of a particular service class.8. References [1] Bradner, S., "The Internet Standards Process- Revision 3", BCP 9, RFC 2026, October 1996. [2] Mankin, A., Baker, F., Braden, R., O'Dell, M., Romanow, A., Weinrib, A. and L. Zhang, "Resource ReSerVation Protocol (RSVP) Version 1 Applicability Statement", RFC 2208, September 1997. [3] Braden. R., Clark, D. and S. Shenker, "Integrated Services in the Internet Architecture: an Overview", RFC 1633, June 1994. [4] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z. and W. Weiss, "An Architecture for Differentiated Services", RFC 2475, December 1998. [5] Baker, F., Iturralde, C., Le Faucher, F., Davie, B., "Aggregation of RSVP for IPv4 and IPv6 Reservations", Work in Progress. [6] Bernet, Y., "Format of the RSVP DCLASS Object", RFC 2996, November 2000.Huston Informational [Page 22]RFC 2990 Next Steps for QoS Architecture November 2000 [7] Bernet, Y., Yavatkar, R., Ford, P., Baker, F., Zhang, L., Speer, M., Braden, R., Davie, B., Wroclawski, J. and E. Felstaine, "A Framework for Integrated Services Operation Over DiffServ Networks", RFC 2998, November 2000. [8] "Quality of Service Technical Overview", Microsoft Technical Library, Microsoft Corporation, September 1999. [9] "Resource Reservation Protocol API (RAPI)", Open Group Technical Standard, C809 ISBN 1-85912-226-4, The Open Group, December 1998. [10] Berger, L. and T. O'Malley, "RSVP Extensions for IPSEC Data Flows", RFC 2007, September 1997. [11] Mills, C., Hirsh, D. and G. Ruth, "Internet Accounting: Background", RFC 1272, November 1991.9. Acknowledgments Valuable contributions to this document came from Yoram Bernet, Brian Carpenter, Jon Crowcroft, Tony Hain and Henning Schulzrinne.10. Author's Address Geoff Huston Telstra 5/490 Northbourne Ave Dickson ACT 2602 AUSTRALIA EMail: gih@telstra.netHuston Informational [Page 23]RFC 2990 Next Steps for QoS Architecture November 200011. Full Copyright Statement Copyright (C) The Internet Society (2000). All Rights Reserved. This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English. The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns. This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.Acknowledgement Funding for the RFC Editor function is currently provided by the Internet Society.Huston Informational [Page 24]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -