📄 rfc2328.hastabs.txt
字号:
Looking at this another way, inter-area routing can be pictured as forcing a star configuration on the Autonomous System, with the backbone as hub and each of the non-backbone areas as spokes.Moy Standards Track [Page 27]RFC 2328 OSPF Version 2 April 1998 The topology of the backbone dictates the backbone paths used between areas. The topology of the backbone can be enhanced by adding virtual links. This gives the system administrator some control over the routes taken by inter-area traffic. The correct area border router to use as the packet exits the source area is chosen in exactly the same way routers advertising external routes are chosen. Each area border router in an area summarizes for the area its cost to all networks external to the area. After the SPF tree is calculated for the area, routes to all inter-area destinations are calculated by examining the summaries of the area border routers. 3.3. Classification of routers Before the introduction of areas, the only OSPF routers having a specialized function were those advertising external routing information, such as Router RT5 in Figure 2. When the AS is split into OSPF areas, the routers are further divided according to function into the following four overlapping categories: Internal routers A router with all directly connected networks belonging to the same area. These routers run a single copy of the basic routing algorithm. Area border routers A router that attaches to multiple areas. Area border routers run multiple copies of the basic algorithm, one copy for each attached area. Area border routers condense the topological information of their attached areas for distribution to the backbone. The backbone in turn distributes the information to the other areas. Backbone routers A router that has an interface to the backbone area. This includes all routers that interface to more than one area (i.e., area border routers). However, backbone routers do not have to be area border routers. Routers with all interfaces connecting to the backbone area are supported.Moy Standards Track [Page 28]RFC 2328 OSPF Version 2 April 1998 AS boundary routers A router that exchanges routing information with routers belonging to other Autonomous Systems. Such a router advertises AS external routing information throughout the Autonomous System. The paths to each AS boundary router are known by every router in the AS. This classification is completely independent of the previous classifications: AS boundary routers may be internal or area border routers, and may or may not participate in the backbone. 3.4. A sample area configuration Figure 6 shows a sample area configuration. The first area consists of networks N1-N4, along with their attached routers RT1-RT4. The second area consists of networks N6-N8, along with their attached routers RT7, RT8, RT10 and RT11. The third area consists of networks N9-N11 and Host H1, along with their attached routers RT9, RT11 and RT12. The third area has been configured so that networks N9-N11 and Host H1 will all be grouped into a single route, when advertised external to the area (see Section 3.5 for more details). In Figure 6, Routers RT1, RT2, RT5, RT6, RT8, RT9 and RT12 are internal routers. Routers RT3, RT4, RT7, RT10 and RT11 are area border routers. Finally, as before, Routers RT5 and RT7 are AS boundary routers. Figure 7 shows the resulting link-state database for the Area 1. The figure completely describes that area's intra-area routing. It also shows the complete view of the internet for the two internal routers RT1 and RT2. It is the job of the area border routers, RT3 and RT4, to advertise into Area 1 the distances to all destinations external to the area. These are indicated in Figure 7 by the dashed stub routes. Also, RT3 and RT4 must advertise into Area 1 the location of the AS boundary routers RT5 and RT7. Finally, AS-external-LSAs from RT5 and RT7 are flooded throughout the entire AS, and in particular throughout Area 1. These LSAs are included in Area 1's database, and yield routes to Networks N12-N15. Routers RT3 and RT4 must also summarize Area 1's topology forMoy Standards Track [Page 29]RFC 2328 OSPF Version 2 April 1998 ........................... . + . . | 3+---+ . N12 N14 . N1|--|RT1|\ 1 . \ N13 / . | +---+ \ . 8\ |8/8 . + \ ____ . \|/ . / \ 1+---+8 8+---+6 . * N3 *---|RT4|------|RT5|--------+ . \____/ +---+ +---+ | . + / \ . |7 | . | 3+---+ / \ . | | . N2|--|RT2|/1 1\ . |6 | . | +---+ +---+8 6+---+ | . + |RT3|------|RT6| | . +---+ +---+ | . 2/ . Ia|7 | . / . | | . +---------+ . | | .Area 1 N4 . | | ........................... | | .......................... | | . N11 . | | . +---------+ . | | . | . | | N12 . |3 . Ib|5 |6 2/ . +---+ . +----+ +---+/ . |RT9| . .........|RT10|.....|RT7|---N15. . +---+ . . +----+ +---+ 9 . . |1 . . + /3 1\ |1 . . _|__ . . | / \ __|_ . . / \ 1+----+2 |/ \ / \ . . * N9 *------|RT11|----| * N6 * . . \____/ +----+ | \____/ . . | . . | | . . |1 . . + |1 . . +--+ 10+----+ . . N8 +---+ . . |H1|-----|RT12| . . |RT8| . . +--+SLIP +----+ . . +---+ . . |2 . . |4 . . | . . | . . +---------+ . . +--------+ .Moy Standards Track [Page 30]RFC 2328 OSPF Version 2 April 1998 . N10 . . N7 . . . .Area 2 . .Area 3 . ................................ .......................... Figure 6: A sample OSPF area configuration distribution to the backbone. Their backbone LSAs are shown in Table 4. These summaries show which networks are contained in Area 1 (i.e., Networks N1-N4), and the distance to these networks from the routers RT3 and RT4 respectively. The link-state database for the backbone is shown in Figure 8. The set of routers pictured are the backbone routers. Router RT11 is a backbone router because it belongs to two areas. In order to make the backbone connected, a virtual link has been configured between Routers R10 and R11. The area border routers RT3, RT4, RT7, RT10 and RT11 condense the routing information of their attached non-backbone areas for distribution via the backbone; these are the dashed stubs that appear in Figure 8. Remember that the third area has been configured to condense Networks N9-N11 and Host H1 into a single route. This yields a single dashed line for networks N9-N11 and Host H1 in Figure 8. Routers RT5 and RT7 are AS boundary routers; their externally derived information also appears on the graph in Figure 8 as stubs. Network RT3 adv. RT4 adv. _____________________________ N1 4 4 N2 4 4 N3 1 1 N4 2 3 Table 4: Networks advertised to the backbone by Routers RT3 and RT4.Moy Standards Track [Page 31]RFC 2328 OSPF Version 2 April 1998 **FROM** |RT|RT|RT|RT|RT|RT| |1 |2 |3 |4 |5 |7 |N3| ----- ------------------- RT1| | | | | | |0 | RT2| | | | | | |0 | RT3| | | | | | |0 | * RT4| | | | | | |0 | * RT5| | |14|8 | | | | T RT7| | |20|14| | | | O N1|3 | | | | | | | * N2| |3 | | | | | | * N3|1 |1 |1 |1 | | | | N4| | |2 | | | | | Ia,Ib| | |20|27| | | | N6| | |16|15| | | | N7| | |20|19| | | | N8| | |18|18| | | | N9-N11,H1| | |29|36| | | | N12| | | | |8 |2 | | N13| | | | |8 | | | N14| | | | |8 | | | N15| | | | | |9 | | Figure 7: Area 1's Database. Networks and routers are represented by vertices. An edge of cost X connects Vertex A to Vertex B iff the intersection of Column A and Row B is marked with an X.Moy Standards Track [Page 32]RFC 2328 OSPF Version 2 April 1998 **FROM** |RT|RT|RT|RT|RT|RT|RT |3 |4 |5 |6 |7 |10|11| ------------------------ RT3| | | |6 | | | | RT4| | |8 | | | | | RT5| |8 | |6 |6 | | | RT6|8 | |7 | | |5 | | RT7| | |6 | | | | | * RT10| | | |7 | | |2 | * RT11| | | | | |3 | | T N1|4 |4 | | | | | | O N2|4 |4 | | | | | | * N3|1 |1 | | | | | | * N4|2 |3 | | | | | | Ia| | | | | |5 | | Ib| | | |7 | | | | N6| | | | |1 |1 |3 | N7| | | | |5 |5 |7 | N8| | | | |4 |3 |2 | N9-N11,H1| | | | | | |11| N12| | |8 | |2 | | | N13| | |8 | | | | | N14| | |8 | | | | | N15| | | | |9 | | | Figure 8: The backbone's database. Networks and routers are represented by vertices. An edge of cost X connects Vertex A to Vertex B iff the intersection of Column A and Row B is marked with an X. The backbone enables the exchange of summary information between area border routers. Every area border router hears the area summaries from all other area border routers. It then forms a picture of the distance to all networks outside of its area by examining the collected LSAs, and adding in the backbone distance to each advertising router.Moy Standards Track [Page 33]RFC 2328 OSPF Version 2 April 1998 Again using Routers RT3 and RT4 as an example, the procedure goes as follows: They first calculate the SPF tree for the backbone. This gives the distances to all other area border routers. Also noted are the distances to networks (Ia and Ib) and AS boundary routers (RT5 and RT7) that belong to the backbone. This calculation is shown in Table 5. Next, by looking at the area summaries from these area border routers, RT3 and RT4 can determine the distance to all networks outside their area. These distances are then advertised internally to the area by RT3 and RT4. The advertisements that Router RT3 and RT4 will make into Area 1 are shown in Table 6. Note that Table 6 assumes that an area range has been configured for the backbone which groups Ia and Ib into a single LSA. The information imported into Area 1 by Routers RT
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -