📄 rfc2328.hastabs.txt
字号:
+---+ * |RT7| * |RT7| N3| +---+ T ------------ | O RT7| | | +----------------------+ * N3| X | | N3 * Stub networks **FROM** +---+ +---+ |RT3| |RT4| |RT3|RT4|RT5|RT6|N2 | +---+ +---+ * ------------------------ | N2 | * RT3| | | | | X | +----------------------+ T RT4| | | | | X | | | O RT5| | | | | X | +---+ +---+ * RT6| | | | | X | |RT5| |RT6| * N2| X | X | X | X | | +---+ +---+ Broadcast or NBMA networks Figure 1a: Network map componentsMoy Standards Track [Page 14]RFC 2328 OSPF Version 2 April 1998 Networks and routers are represented by vertices. An edge connects Vertex A to Vertex B iff the intersection of Column A and Row B is marked with an X. The top of Figure 1a shows two routers connected by a point-to- point link. In the resulting link-state database graph, the two router vertices are directly connected by a pair of edges, one in each direction. Interfaces to point-to-point networks need not be assigned IP addresses. When interface addresses are assigned, they are modelled as stub links, with each router advertising a stub connection to the other router's interface address. Optionally, an IP subnet can be assigned to the point- to-point network. In this case, both routers advertise a stub link to the IP subnet, instead of advertising each others' IP interface addresses. The middle of Figure 1a shows a network with only one attached router (i.e., a stub network). In this case, the network appears on the end of a stub connection in the link-state database's graph. When multiple routers are attached to a broadcast network, the link-state database graph shows all routers bidirectionally connected to the network vertex. This is pictured at the bottom of Figure 1a. Each network (stub or transit) in the graph has an IP address and associated network mask. The mask indicates the number of nodes on the network. Hosts attached directly to routers (referred to as host routes) appear on the graph as stub networks. The network mask for a host route is always 0xffffffff, which indicates the presence of a single node. 2.1.1. Representation of non-broadcast networks As mentioned previously, OSPF can run over non-broadcast networks in one of two modes: NBMA or Point-to-MultiPoint. The choice of mode determines the way that the HelloMoy Standards Track [Page 15]RFC 2328 OSPF Version 2 April 1998 protocol and flooding work over the non-broadcast network, and the way that the network is represented in the link- state database. In NBMA mode, OSPF emulates operation over a broadcast network: a Designated Router is elected for the NBMA network, and the Designated Router originates an LSA for the network. The graph representation for broadcast networks and NBMA networks is identical. This representation is pictured in the middle of Figure 1a. NBMA mode is the most efficient way to run OSPF over non- broadcast networks, both in terms of link-state database size and in terms of the amount of routing protocol traffic. However, it has one significant restriction: it requires all routers attached to the NBMA network to be able to communicate directly. This restriction may be met on some non-broadcast networks, such as an ATM subnet utilizing SVCs. But it is often not met on other non-broadcast networks, such as PVC-only Frame Relay networks. On non- broadcast networks where not all routers can communicate directly you can break the non-broadcast network into logical subnets, with the routers on each subnet being able to communicate directly, and then run each separate subnet as an NBMA network (see [Ref15]). This however requires quite a bit of administrative overhead, and is prone to misconfiguration. It is probably better to run such a non- broadcast network in Point-to-Multipoint mode. In Point-to-MultiPoint mode, OSPF treats all router-to- router connections over the non-broadcast network as if they were point-to-point links. No Designated Router is elected for the network, nor is there an LSA generated for the network. In fact, a vertex for the Point-to-MultiPoint network does not appear in the graph of the link-state database. Figure 1b illustrates the link-state database representation of a Point-to-MultiPoint network. On the left side of the figure, a Point-to-MultiPoint network is pictured. It is assumed that all routers can communicate directly, except for routers RT4 and RT5. I3 though I6 indicate the routers'Moy Standards Track [Page 16]RFC 2328 OSPF Version 2 April 1998 IP interface addresses on the Point-to-MultiPoint network. In the graphical representation of the link-state database, routers that can communicate directly over the Point-to- MultiPoint network are joined by bidirectional edges, and each router also has a stub connection to its own IP interface address (which is in contrast to the representation of real point-to-point links; see Figure 1a). On some non-broadcast networks, use of Point-to-MultiPoint mode and data-link protocols such as Inverse ARP (see [Ref14]) will allow autodiscovery of OSPF neighbors even though broadcast support is not available. **FROM** +---+ +---+ |RT3| |RT4| |RT3|RT4|RT5|RT6| +---+ +---+ * -------------------- I3| N2 |I4 * RT3| | X | X | X | +----------------------+ T RT4| X | | | X | I5| |I6 O RT5| X | | | X | +---+ +---+ * RT6| X | X | X | | |RT5| |RT6| * I3| X | | | | +---+ +---+ I4| | X | | | I5| | | X | | I6| | | | X | Figure 1b: Network map components Point-to-MultiPoint networks All routers can communicate directly over N2, except routers RT4 and RT5. I3 through I6 indicate IP interface addressesMoy Standards Track [Page 17]RFC 2328 OSPF Version 2 April 1998 2.1.2. An example link-state database Figure 2 shows a sample map of an Autonomous System. The rectangle labelled H1 indicates a host, which has a SLIP connection to Router RT12. Router RT12 is therefore advertising a host route. Lines between routers indicate physical point-to-point networks. The only point-to-point network that has been assigned interface addresses is the one joining Routers RT6 and RT10. Routers RT5 and RT7 have BGP connections to other Autonomous Systems. A set of BGP- learned routes have been displayed for both of these routers. A cost is associated with the output side of each router interface. This cost is configurable by the system administrator. The lower the cost, the more likely the interface is to be used to forward data traffic. Costs are also associated with the externally derived routing data (e.g., the BGP-learned routes). The directed graph resulting from the map in Figure 2 is depicted in Figure 3. Arcs are labelled with the cost of the corresponding router output interface. Arcs having no labelled cost have a cost of 0. Note that arcs leading from networks to routers always have cost 0; they are significant nonetheless. Note also that the externally derived routing data appears on the graph as stubs. The link-state database is pieced together from LSAs generated by the routers. In the associated graphical representation, the neighborhood of each router or transit network is represented in a single, separate LSA. Figure 4 shows these LSAs graphically. Router RT12 has an interface to two broadcast networks and a SLIP line to a host. Network N6 is a broadcast network with three attached routers. The cost of all links from Network N6 to its attached routers is 0. Note that the LSA for Network N6 is actually generated by one of the network's attached routers: the router that has been elected Designated Router for the network.Moy Standards Track [Page 18]RFC 2328 OSPF Version 2 April 1998 + | 3+---+ N12 N14 N1|--|RT1|\ 1 \ N13 / | +---+ \ 8\ |8/8 + \ ____ \|/ / \ 1+---+8 8+---+6 * N3 *---|RT4|------|RT5|--------+ \____/ +---+ +---+ | + / | |7 | | 3+---+ / | | | N2|--|RT2|/1 |1 |6 | | +---+ +---+8 6+---+ | + |RT3|--------------|RT6| | +---+ +---+ | |2 Ia|7 | | | | +---------+ | | N4 | | | | | | N11 | | +---------+ | | | | | N12 |3 | |6 2/ +---+ | +---+/ |RT9| | |RT7|---N15 +---+ | +---+ 9 |1 + | |1 _|__ | Ib|5 __|_ / \ 1+----+2 | 3+----+1 / \ * N9 *------|RT11|----|---|RT10|---* N6 * \____/ +----+ | +----+ \____/ | | | |1 + |1 +--+ 10+----+ N8 +---+ |H1|-----|RT12| |RT8| +--+SLIP +----+ +---+ |2 |4 | | +---------+ +--------+ N10 N7Moy Standards Track [Page 19]RFC 2328 OSPF Version 2 April 1998 Figure 2: A sample Autonomous System **FROM** |RT|RT|RT|RT|RT|RT|RT|RT|RT|RT|RT|RT| |1 |2 |3 |4 |5 |6 |7 |8 |9 |10|11|12|N3|N6|N8|N9| ----- --------------------------------------------- RT1| | | | | | | | | | | | |0 | | | | RT2| | | | | | | | | | | | |0 | | | | RT3| | | | | |6 | | | | | | |0 | | | | RT4| | | | |8 | | | | | | | |0 | | | | RT5| | | |8 | |6 |6 | | | | | | | | | | RT6| | |8 | |7 | | | | |5 | | | | | | | RT7| | | | |6 | | | | | | | | |0 | | | * RT8| | | | | | | | | | | | | |0 | | | * RT9| | | | | | | | | | | | | | | |0 | T RT10| | | | | |7 | | | | | | | |0 |0 | | O RT11| | | | | | | | | | | | | | |0 |0 | * RT12| | | | | | | | | | | | | | | |0 | * N1|3 | | | | | | | | | | | | | | | | N2| |3 | | | | | | | | | | | | | | | N3|1 |1 |1 |1 | | | | | | | | | | | | | N4| | |2 | | | | | | | | | | | | | | N6| | | | | | |1 |1 | |1 | | | | | | | N7| | | | | | | |4 | | | | | | | | | N8| | | | | | | | | |3 |2 | | | | | | N9| | | | | | | | |1 | |1 |1 | | | | | N10| | | | | | | | | | | |2 | | | | | N11| | | | | | | | |3 | | | | | | | | N12| | | | |8 | |2 | | | | | | | | | | N13| | | | |8 | | | | | | | | | | | | N14| | | | |8 | | | | | | | | | | | | N15| | | | | | |9 | | | | | | | | | | H1| | | | | | | | | | | |10| | | | | Figure 3: The resulting directed graph Networks and routers are represented by vertices. An edge of cost X connects Vertex A to Vertex B iff the intersection of Column A and Row B is marked with an X.Moy Standards Track [Page 20]RFC 2328 OSPF Version 2 April 1998 **FROM** **FROM**
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -