📄 rfc2082.txt
字号:
RFC 2082 RIP-2 MD5 Authentication January 19973.2.2. Message Reception When the message is received, the process is reversed: (1) The digest is set aside, (2) The appropriate algorithm and key are determined from the value of the Key Identifier field, (3) The RIP-2 Authentication Key is written into the appropriate number (16 when Keyed MD5 is used) of bytes starting at the offset indicated, (4) Appropriate padding is added as needed, and (5) A new digest calculated using the indicated algorithm. If the calculated digest does not match the received digest, the message is discarded unprocessed. If the neighbor has been heard from recently enough to have viable routes in the route table and the received sequence number is less than the last one received, the message likewise is discarded unprocessed. When connectivity to the neighbor has been lost, the receiver SHOULD be ready to accept either: - a message with a sequence number of zero - a message with a higher sequence number than the last received sequence number. A router that has forgotten its current sequence number but remembers its key and Key-ID MUST send its first packet with a sequence number of zero. This leaves a small opening for a replay attack. Router vendors are encouraged to provide stable storage for keys, key lifetimes, Key-IDs, and the related sequence numbers. Acceptable messages are now truncated to RIP-2 message itself and treated normally.4. Management Procedures4.1. Key Management Requirements It is strongly desirable that a hypothetical security breach in one Internet protocol not automatically compromise other Internet protocols. The Authentication Key of this specification SHOULD NOT be stored using protocols or algorithms that have known flaws.Baker & Atkinson Standards Track [Page 7]RFC 2082 RIP-2 MD5 Authentication January 1997 Implementations MUST support the storage of more than one key at the same time, although it is recognized that only one key will normally be active on an interface. They MUST associate a specific lifetime (i.e., date/time first valid and date/time no longer valid) and a key identifier with each key, and MUST support manual key distribution (e.g., the privileged user manually typing in the key, key lifetime, and key identifier on the router console). The lifetime may be infinite. If more than one algorithm is supported, then the implementation MUST require that the algorithm be specified for each key at the time the other key information is entered. Keys that are out of date MAY be deleted at will by the implementation without requiring human intervention. Manual deletion of active keys SHOULD also be supported. It is likely that the IETF will define a standard key management protocol. It is strongly desirable to use that key management protocol to distribute RIP-2 Authentication Keys among communicating RIP-2 implementations. Such a protocol would provide scalability and significantly reduce the human administrative burden. The Key ID can be used as a hook between RIP-2 and such a future protocol. Key management protocols have a long history of subtle flaws that are often discovered long after the protocol was first described in public. To avoid having to change all RIP-2 implementations should such a flaw be discovered, integrated key management protocol techniques were deliberately omitted from this specification.4.2. Key Management Procedures As with all security methods using keys, it is necessary to change the RIP-2 Authentication Key on a regular basis. To maintain routing stability during such changes, implementations MUST be able to store and use more than one RIP-2 Authentication Key on a given interface at the same time. Each key will have its own Key Identifier, which is stored locally. The combination of the Key Identifier and the interface associated with the message uniquely identifies the Authentication Algorithm and RIP-2 Authentication Key in use. As noted above in Section 2.2.1, the party creating the RIP-2 message will select a valid key from the set of valid keys for that interface. The receiver will use the Key Identifier and interface to determine which key to use for authentication of the received message. More than one key may be associated with an interface at the same time.Baker & Atkinson Standards Track [Page 8]RFC 2082 RIP-2 MD5 Authentication January 1997 Hence it is possible to have fairly smooth RIP-2 Authentication Key rollovers without losing legitimate RIP-2 messages because the stored key is incorrect and without requiring people to change all the keys at once. To ensure a smooth rollover, each communicating RIP-2 system must be updated with the new key several minutes before the current key will expire and several minutes before the new key lifetime begins. The new key should have a lifetime that starts several minutes before the old key expires. This gives time for each system to learn of the new RIP-2 Authentication Key before that key will be used. It also ensures that the new key will begin being used and the current key will go out of use before the current key's lifetime expires. For the duration of the overlap in key lifetimes, a system may receive messages using either key and authenticate the message. The Key-ID in the received message is used to select the appropriate key for authentication.4.3. Pathological Cases Two pathological cases exist which must be handled, which are failures of the network manager. Both of these should be exceedingly rare. During key switchover, devices may exist which have not yet been successfully configured with the new key. Therefore, routers SHOULD implement (and would be well advised to implement) an algorithm that detects the set of keys being used by its neighbors, and transmits its messages using both the new and old keys until all of the neighbors are using the new key or the lifetime of the old key expires. Under normal circumstances, this elevated transmission rate will exist for a single update interval. In the event that the last key associated with an interface expires, it is unacceptable to revert to an unauthenticated condition, and not advisable to disrupt routing. Therefore, the router should send a "last authentication key expiration" notification to the network manager and treat the key as having an infinite lifetime until the lifetime is extended, the key is deleted by network management, or a new key is configured.5. Conformance Requirements To conform to this specification, an implementation MUST support all of its aspects. The Keyed MD5 authentication algorithm MUST be implemented by all conforming implementations. MD5 is defined in RFC-1321. A conforming implementation MAY also support other authentication algorithms such as Keyed Secure Hash Algorithm (SHA). Manual key distribution as described above MUST be supported by all conforming implementations. All implementations MUST support theBaker & Atkinson Standards Track [Page 9]RFC 2082 RIP-2 MD5 Authentication January 1997 smooth key rollover described under "Key Change Procedures." The user documentation provided with the implementation MUST contain clear instructions on how to ensure that smooth key rollover occurs. Implementations SHOULD support a standard key management protocol for secure distribution of RIP-2 Authentication Keys once such a key management protocol is standardized by the IETF.6. Acknowledgments This work was done by the RIP-2 Working Group, of which Gary Malkin is the Chair. This suggestion was originally made by Christian Huitema on behalf of the IAB. Jeff Honig (Cornell) and Dennis Ferguson (ANS) built the first operational prototype, proving out the algorithms. The authors gladly acknowledge significant inputs from each of these sources.7. References [1] Malkin, G., "RIP Version 2 Carrying Additional Information", RFC 1388, January 1993. [2] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321, April 1992. [3] Malkin, G., and F. Baker, "RIP Version 2 MIB Extension", RFC 1389, Xylogics, Inc., Advanced Computer Communications, January 1993. [4] S. Bellovin, "Security Problems in the TCP/IP Protocol Suite", ACM Computer Communications Review, Volume 19, Number 2, pp.32-48, April 1989. [5] Haller, N., and R. Atkinson, "Internet Authentication Guidelines", RFC 1704, October 1994. [6] Braden, R., Clark, D., Crocker, S., and C. Huitema, "Report of IAB Workshop on Security in the Internet Architecture", RFC 1636, June 1994. [7] Atkinson, R., "IP Authentication Header", RFC 1826, August 1995. [8] Atkinson, R., "IP Encapsulating Security Payload", RFC 1827, August 1995.Baker & Atkinson Standards Track [Page 10]RFC 2082 RIP-2 MD5 Authentication January 19978. Security Considerations This entire memo describes and specifies an authentication mechanism for the RIP-2 routing protocol that is believed to be secure against active and passive attacks. Passive attacks are clearly widespread in the Internet at present. Protection against active attacks is also needed because active attacks are becoming more common. Users need to understand that the quality of the security provided by this mechanism depends completely on the strength of the implemented authentication algorithms, the strength of the key being used, and the correct implementation of the security mechanism in all communicating RIP-2 implementations. This mechanism also depends on the RIP-2 Authentication Key being kept confidential by all parties. If any of these incorrect or insufficiently secure, then no real security will be provided to the users of this mechanism. Specifically with respect to the use of SNMP, compromise of SNMP security has the necessary result that the various RIP-2 configuration parameters (e.g. routing table, RIP-2 Authentication Key) manageable via SNMP could be compromised as well. Changing Authentication Keys using non-encrypted SNMP is no more secure than sending passwords in the clear. Confidentiality is not provided by this mechanism. Recent work in the IETF provides a standard mechanism for IP-layer encryption. [8] That mechanism might be used to provide confidentiality for RIP-2 in the future. Protection against traffic analysis is also not provided. Mechanisms such as bulk link encryption might be used when protection against traffic analysis is required. The memo is written to address a security consideration in RIP Version 2 that was raised during the IAB's recent security review [6].9. Chairman's Address Gary Scott Malkin Xylogics, Inc. 53 Third Avenue Burlington, MA 01803 Phone: (617) 272-8140 EMail: gmalkin@Xylogics.COMBaker & Atkinson Standards Track [Page 11]RFC 2082 RIP-2 MD5 Authentication January 199710. Authors' Addresses Fred Baker cisco Systems 519 Lado Drive Santa Barbara, California 93111 Phone: (805) 681 0115 Email: fred@cisco.com Randall Atkinson cisco Systems 170 West Tasman Drive San Jose, CA 95134-1706 Phone: (408) 526-6566 EMail: rja@cisco.comBaker & Atkinson Standards Track [Page 12]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -