📄 rfc1798.txt
字号:
Network Working Group A. YoungRequest for Comments: 1798 ISODE ConsortiumCategory: Standards Track June 1995 Connection-less Lightweight X.500 Directory Access ProtocolStatus of this Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.X.500 The protocol described in this document is designed to provide access to the Directory while not incurring the resource requirements of the Directory Access Protocol (DAP) [3]. In particular, it is aimed at avoiding the elapsed time that is associated with connection-oriented communication and it facilitates use of the Directory in a manner analagous to the DNS [5,6]. It is specifically targeted at simple lookup applications that require to read a small number of attribute values from a single entry. It is intended to be a complement to DAP and LDAP [4]. The protocol specification draws heavily on that of LDAP.1. Background The Directory can be used as a repository for many kinds of information. The full power of DAP is unnecessary for applications that require simple read access to a few attribute values. Applications addressing is a good example of this type of use where an application entity needs to determine the Presentation Address (PA) of a peer entity given that peer's Application Entity Title (AET). If the AET is a Directory Name (DN) then the required result can be obtained from the PA attribute of the Directory entry identified by the AET. This is very similar to DNS.Young Standards Track [Page 1]RFC 1798 CLDAP June 1995 Use of DAP to achieve this functionality involves a significant number of network exchanges: ___________________________________________________________ |_#_|______Client_(DUA)________DAP________Server_(DSA)_____| | 1| N-Connect.request -> | | 2| <- N-Connect.response | | 3| T-Connect.request -> | | 4| <- T-Connect.response | | | S-Connect.request, | | | P-Connect.request, | | | A-Associate.request, | | 5| DAP-Bind.request -> | | | S-Connect.response, | | | P-Connect.response, | | | A-Associate.response, | | 6| <- DAP-Bind.response | | 7| DAP-Read.request -> | | 8| <- DAP-Read.response | | | S-Release.request, | | | P-Release.request, | | | A-Release.request, | | 9| DAP-Unbind.request -> | | | S-Release.response, | | | P-Release.response, | | | A-Release.response, | | 10| <- DAP-Unbind.response | | | T-Disconnect.request, | | 11| N-Disconnect.request -> | | | T-Disconnect.response,| | 12| <- N-Disconnect.response | |___|______________________________________________________|Young Standards Track [Page 2]RFC 1798 CLDAP June 1995 This is 10 packets before the application can continue, given that it can probably do so after issuing the T-Disconnect.request. (Some minor variations arise depending upon the class of Network and Transport service that is being used; for example use of TP4 over CLNS reduces the packet count by two.) LDAP is no better in the case where the LDAP server uses full DAP to communicate with the Directory: ____________________________________________________________________ |__#_|___Client_____LDAP_____LDAP_server______DAP_________DSA_______| | 1 | TCP SYN -> | | 2 | <- TCP SYN ACK | | 3 | BindReq -> | | 4 | N-Connect.req -> | | 5 | <- N-Connect.res | | 6 | T-Connect.req -> | | 7 | <- T-Connect.res | | 8 | DAP-Bind.req -> | | 9 | <- DAP-Bind.res | | 10 | <- BindRes | | 11 | SearchReq -> | | 12 | DAP-Search.req -> | | 13 | <- DAP-Search.res | | 14 | <- SearchRes | | 15 | TCP FIN -> | | 16 | DAP-Unbind.req -> | | 17 | <- DAP-Unbind.res | | 18 | N-Disconnect.req -> | | 19 | <- N-Disconnect.res| |____|______________________________________________________________|Young Standards Track [Page 3]RFC 1798 CLDAP June 1995 Here there are 14 packets before the application can continue. Even if the LDAP server is on the same host as the DSA (so packet delay is negligible), or if the DSA supports LDAP directly, then there are still 6 packets. ____________________________________ | #| Client LDAP LDAP server| |__|________________________________| | 1| TCP SYN -> | | 2| <- TCP SYN ACK| | 3| BindReq -> | | 4| <- BindRes | | 5| SearchReq -> | |_6|_______________<-____SearchRes__| This protocol provides for simple access to the Directory where the delays inherent in the above exchanges are unacceptable and where the additional functionality provided by connection-mode operation is not required.2. Protocol Model CLDAP is based directly on LDAP [4] and inherits many of the key aspects of the LDAP protocol: - - Many protocol data elements are encoding as ordinary strings (e.g., Distinguished Names). - - A lightweight BER encoding is used to encode all protocol elements. It is different to LDAP in that: - - Protocol elements are carried directly over UDP or other connection-less transport, bypassing much of the session/presentation overhead and that of connections (LDAP uses a connection-mode transport service). - - A restricted set of operations is available. The definitions of most protocol elements are inherited from LDAP. The general model adopted by this protocol is one of clients performing protocol operations against servers. In this model, this is accomplished by a client transmitting a protocol request describing the operation to be performed to a server, which is then responsible for performing the necessary operations on the Directory.Young Standards Track [Page 4]RFC 1798 CLDAP June 1995 Upon completion of the necessary operations, the server returns a response containing any results or errors to the requesting client. Note that, although servers are required to return responses whenever such responses are defined in the protocol, there is no requirement for synchronous behaviour on the part of either client or server implementations: requests and responses for multiple operations may be exchanged by client and servers in any order, as long as servers eventually send a response for every request that requires one. Also, because the protocol is implemented over a connection-less transport service clients must be prepared for either requests or responses to be lost. Clients should use a retry mechanism with timeouts in order to achieve the desired level of reliability. For example, a client might send off a request and wait for two seconds. If no reply is forthcoming, the request is sent again and the client waits four seconds. If there is still no reply, the client sends it again and waits eight seconds, and so on, until some maximun time. Such algorithms are widely used in other datagram-based protocol implementations, such as the DNS. It is not appropriate to mandate a specific algorithm as this will depend upon the requirments and operational environment of individual CLDAP client implementations. It is not required that a client abandon any requests to which no
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -