📄 rfc1449.txt
字号:
Although the partyTable gives transport addressing information for an SNMPv2 party, it is suggested that administrators configure their SNMPv2 entities acting in an agent role to listen on transport selector "snmp-l" (which consists of six ASCII characters), when using a CL-mode network service to realize the CLTS. Further, it is suggested that notification sinks be configured to listen on transport selector "snmpt-l" (which consists of seven ASCII characters) when using a CL- mode network service to realize the CLTS. Similarly, when using a CO-mode network service to realize the CLTS, the suggested transport selectors are "snmp-o" and "snmpt-o", for agent and notification sink, respectively. The partyTable also lists the maximum message size which a SNMPv2 party is willing to accept. This value must be at least 484 octets. Implementation of larger values is encouraged whenever possible. Case, McCloghrie, Rose & Waldbusser [Page 8] RFC 1449 Transport Mappings for SNMPv2 April 1993 5. SNMPv2 over DDP This is an optional transport mapping. 5.1. Serialization Each instance of a message is serialized onto a single DDP datagram [5], using the algorithm specified in Section 8. 5.2. Well-known Values SNMPv2 messages are sent using DDP protocol type 8. SNMPv2 entities acting in an agent role listens on DDP socket number 8, whilst notification sinks listen on DDP socket number 9. Although the partyTable gives transport addressing information for an SNMPv2 party, administrators must configure their SNMPv2 entities acting in an agent role to use NBP type "SNMP Agent" (which consists of ten ASCII characters), whilst notification sinks must be configured to use NBP type "SNMP Trap Handler" (which consists of seventeen ASCII characters). The NBP name for agents and notification sinks should be stable - NBP names should not change any more often than the IP address of a typical TCP/IP node. It is suggested that the NBP name be stored in some form of stable storage. The partyTable also lists the maximum message size which a SNMPv2 party is willing to accept. This value must be at least 484 octets. Implementation of larger values is encouraged whenever possible. 5.3. Discussion of AppleTalk Addressing The AppleTalk protocol suite has certain features not manifest in the TCP/IP suite. AppleTalk's naming strategy and the dynamic nature of address assignment can cause problems for SNMPv2 entities that wish to manage AppleTalk networks. TCP/IP nodes have an associated IP address which distinguishes each from the other. In contrast, AppleTalk nodes generally have no such characteristic. The network-level address, while often relatively stable, can change at every reboot (or more Case, McCloghrie, Rose & Waldbusser [Page 9] RFC 1449 Transport Mappings for SNMPv2 April 1993 frequently). Thus, when SNMPv2 is mapped over DDP, nodes are identified by a "name", rather than by an "address". Hence, all AppleTalk nodes that implement this mapping are required to respond to NBP lookups and confirms (e.g., implement the NBP protocol stub), which guarantees that a mapping from NBP name to DDP address will be possible. In determining the SNMP identity to register for an SNMPv2 entity, it is suggested that the SNMP identity be a name which is associated with other network services offered by the machine. NBP lookups, which are used to map NBP names into DDP addresses, can cause large amounts of network traffic as well as consume CPU resources. It is also the case that the ability to perform an NBP lookup is sensitive to certain network disruptions (such as zone table inconsistencies) which would not prevent direct AppleTalk communications between two SNMPv2 entities. Thus, it is recommended that NBP lookups be used infrequently, primarily to create a cache of name-to-address mappings. These cached mappings should then be used for any further SNMP traffic. It is recommended that SNMPv2 entities acting in a manager role should maintain this cache between reboots. This caching can help minimize network traffic, reduce CPU load on the network, and allow for (some amount of) network trouble shooting when the basic name-to-address translation mechanism is broken. 5.3.1. How to Acquire NBP names An SNMPv2 entity acting in a manager role may have a pre- configured list of names of "known" SNMPv2 entities acting in an agent role. Similarly, an SNMPv2 entity acting in a manager role might interact with an operator. Finally, an SNMPv2 entity acting in a manager role might communicate with all SNMPv2 entities acting in an agent role in a set of zones or networks. Case, McCloghrie, Rose & Waldbusser [Page 10] RFC 1449 Transport Mappings for SNMPv2 April 1993 5.3.2. When to Turn NBP names into DDP addresses When an SNMPv2 entity uses a cache entry to address an SNMP packet, it should attempt to confirm the validity mapping, if the mapping hasn't been confirmed within the last T1 seconds. This cache entry lifetime, T1, has a minimum, default value of 60 seconds, and should be configurable. An SNMPv2 entity acting in a manager role may decide to prime its cache of names prior to actually communicating with another SNMPv2 entity. In general, it is expected that such an entity may want to keep certain mappings "more current" than other mappings, e.g., those nodes which represent the network infrastructure (e.g., routers) may be deemed "more important". Note that an SNMPv2 entity acting in a manager role should not prime its entire cache upon initialization - rather, it should attempt resolutions over an extended period of time (perhaps in some pre-determined or configured priority order). Each of these resolutions might, in fact, be a wildcard lookup in a given zone. An SNMPv2 entity acting in an agent role must never prime its cache. Such an entity should do NBP lookups (or confirms) only when it needs to send an SNMP trap. When generating a response, such an entity does not need to confirm a cache entry. 5.3.3. How to Turn NBP names into DDP addresses If the only piece of information available is the NBP name, then an NBP lookup should be performed to turn that name into a DDP address. However, if there is a piece of stale information, it can be used as a hint to perform an NBP confirm (which sends a unicast to the network address which is presumed to be the target of the name lookup) to see if the stale information is, in fact, still valid. An NBP name to DDP address mapping can also be confirmed implicitly using only SNMP transactions. For example, an SNMPv2 entity acting in a manager role issuing a retrieval operation could also retrieve the relevant objects from the NBP group [6] for the SNMPv2 entity acting in an agent role. Case, McCloghrie, Rose & Waldbusser [Page 11] RFC 1449 Transport Mappings for SNMPv2 April 1993 This information can then be correlated with the source DDP address of the response. 5.3.4. What if NBP is broken Under some circumstances, there may be connectivity between two SNMPv2 entities, but the NBP mapping machinery may be broken, e.g., o the NBP FwdReq (forward NBP lookup onto local attached network) mechanism might be broken at a router on the other entity's network; or, o the NBP BrRq (NBP broadcast request) mechanism might be broken at a router on the entity's own network; or, o NBP might be broken on the other entity's node. An SNMPv2 entity acting in a manager role which is dedicated to AppleTalk management might choose to alleviate some of these failures by directly implementing the router portion of NBP. For example, such an entity might already know all the zones on the AppleTalk internet and the networks on which each zone appears. Given an NBP lookup which fails, the entity could send an NBP FwdReq to the network in which the agent was last located. If that failed, the station could then send an NBP LkUp (NBP lookup packet) as a directed (DDP) multicast to each network number on that network. Of the above (single) failures, this combined approach will solve the case where either the local router's BrRq-to-FwdReq mechanism is broken or the remote router's FwdReq-to-LkUp mechanism is broken. Case, McCloghrie, Rose & Waldbusser [Page 12] RFC 1449 Transport Mappings for SNMPv2 April 1993 6. SNMPv2 over IPX This is an optional transport mapping. 6.1. Serialization Each instance of a message is serialized onto a single IPX datagram [7], using the algorithm specified in Section 8. 6.2. Well-known Values SNMPv2 messages are sent using IPX packet type 4 (i.e., Packet Exchange Packet). Although the partyTable gives transport addressing information for an SNMPv2 party, it is suggested that administrators configure their SNMPv2 entities acting in an agent role to listen on IPX socket 36879 (900f hexadecimal). Further, it is suggested that notification sinks be configured to listen on IPX socket 36880 (9010 hexadecimal) The partyTable also lists the maximum message size which a SNMPv2 party is willing to accept. This value must be at least 546 octets. Implementation of larger values is encouraged whenever possible. Case, McCloghrie, Rose & Waldbusser [Page 13] RFC 1449 Transport Mappings for SNMPv2 April 1993 7. Proxy to SNMPv1 In order to provide proxy to community-based SNMP [8], some definitions are necessary for both transport domains and authentication protocols. 7.1. Transport Domain: rfc1157Domain The transport domain, rfc1157Domain, indicates the transport mapping for community-based SNMP messages defined in RFC 1157. When a party's transport domain (partyTDomain) is rfc1157Domain: (1) the party's transport address (partyTAddress) shall be 6 octets long, the initial 4 octets containing the IP- address in network-byte order, and the last two octets containing the UDP port in network-byte order; and, (2) the party's authentication protocol (partyAuthProtocol) shall be rfc1157noAuth. When a proxy relationship identifies a proxy destination party which has rfc1157Domain as its transport domain: (1) the proxy source party (contextSrcPartyIndex) and proxy context (contextProxyContext) components of the proxy relationship are irrelevant; and, (2) Section 3.1 of [9] specifies the behavior of the proxy agent. 7.2. Authentication Algorithm: rfc1157noAuth A party's authentication protocol (partyAuthProtocol) specifies the protocol and mechanism by which the party authenticates the integrity and origin of the SNMPv1 or SNMPv2 PDUs it generates. When a party's authentication protocol is rfc1157noAuth: (1) the party's public authentication key (partyAuthPublic), clock (partyAuthClock), and lifetime (partyAuthLifetime) are irrelevant; and, Case, McCloghrie, Rose & Waldbusser [Page 14] RFC 1449 Transport Mappings for SNMPv2 April 1993 (2) the party's private authentication key (partySecretsAuthPrivate) shall be used as the 1157 community for the proxy destination, and shall be at least one octet in length. (No maximum length is specified.) Note that when setting the party's private authentication key, the exclusive-OR semantics specified in [10] still apply. Case, McCloghrie, Rose & Waldbusser [Page 15] RFC 1449 Transport Mappings for SNMPv2 April 1993 8. Serialization using the Basic Encoding Rules When the Basic Encoding Rules [11] are used for serialization: (1) When encoding the length field, only the definite form is used; use of the indefinite form encoding is prohibited. Note that when using the definite-long form, it is permissible to use more than the minimum number of length octets necessary to encode the length field. (2) When encoding the value field, the primitive form shall be used for all simple types, i.e., INTEGER, OCTET STRING, OBJECT IDENTIFIER, and BIT STRING (either IMPLICIT or explicit). The constructed form of encoding shall be used only for structured types, i.e., a SEQUENCE or an IMPLICIT SEQUENCE. (3) When a BIT STRING is serialized, all named-bits are transferred regardless of their truth-value. Further, if the number of named-bits is not an integral multiple of eight, then the fewest number of additional zero-valued bits are transferred so that an integral multiple of eight bits is transferred. These restrictions apply to all aspects of ASN.1 encoding, including the message wrappers, protocol data units, and the data objects they contain.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -