📄 rfc1666.txt
字号:
A write operation to this object will not change the operational value reflected in snaNodeOperType until the Node has been re-activated (e.g., after the next initialization of the SNA services)." ::= { snaNodeAdminEntry 3 }snaNodeAdminXidFormat OBJECT-TYPE SYNTAX INTEGER { format0(1), format1(2), format3(3) } MAX-ACCESS read-create STATUS current DESCRIPTION "The value indicates the type of XID format used for this Node. Note that there is no format type 2. A write operation to this object will not change the operational value reflected in snaNodeOperAdminXidFormat until the Node has been re-activated (e.g., after the next initialization of the SNA services)." ::= { snaNodeAdminEntry 4 }Kielczewski, Kostick & Shih [Page 13]RFC 1666 SNANAU MIB August 1994snaNodeAdminBlockNum OBJECT-TYPE SYNTAX DisplayString (SIZE(3)) MAX-ACCESS read-create STATUS current DESCRIPTION "The value indicates the block number for this Node instance. It is the first 3 hexadecimal digits of the SNA Node id. A write operation to this object will not change the operational value reflected in snaNodeOperBlockNum until the Node has been re-activated (e.g., after the next initialization of the SNA services)." ::= { snaNodeAdminEntry 5 }snaNodeAdminIdNum OBJECT-TYPE SYNTAX DisplayString (SIZE(5)) MAX-ACCESS read-create STATUS current DESCRIPTION "The value indicates the ID number for this Node instance. This is the last 5 hexadecimal digits of the SNA Node id. A write operation to this object will not change the operational value reflected in snaNodeOperIdNum until the Node has been re-activated (e.g., after the next initialization of the SNA services)." ::= { snaNodeAdminEntry 6 }snaNodeAdminEnablingMethod OBJECT-TYPE SYNTAX INTEGER { other (1), startup (2), demand (3), onlyMS (4) } MAX-ACCESS read-create STATUS current DESCRIPTION "The value indicates how the Node should be activated for the first time. The values have the following meanings: other (1) - may be used for proprietary methods not listed in this enumeration,Kielczewski, Kostick & Shih [Page 14]RFC 1666 SNANAU MIB August 1994 startup (2) - at SNA services' initialization time (this is the default), demand (3) - only when LU is requested by application, or onlyMS (4) - by a Management Station only. A write operation to this object may immediately change the operational value reflected in snaNodeOperEnablingMethod depending on the Agent implementation. If the Agent implementation accepts immediate changes, then the behavior of the Node changes immediately and not only after the next system startup of the SNA services. An immediate change may only apply when the current value 'demand (3)' is changed to 'onlyMS (4)' and vice versa." ::= { snaNodeAdminEntry 7 }snaNodeAdminLuTermDefault OBJECT-TYPE SYNTAX INTEGER { unbind (1), termself (2), rshutd (3), poweroff(4) } MAX-ACCESS read-create STATUS current DESCRIPTION "The value indicates the desired default method used to deactivate LUs for this Node For LU6.2s, 'unbind(1)' is the only valid value. unbind(1) - terminate the LU-LU session by sending an SNA UNBIND request. termself(2) - terminate the LU-LU session by sending an SNA TERM-SELF (Terminate Self) request on the SSCP-LU session. The SSCP will inform the remote session LU partner to send an UNBIND request to terminate the session. rshutd(3) - terminate the LU-LU session by sending an SNA RSHUTD (Request ShutDown) request to the remote session LU partner. The remote LU will then send an UNBIND request to terminate the session. poweroff(4) - terminate the LU-LU session by sending either an SNA LUSTAT (LU Status) request on the LU-LU session or an SNA NOTIFY request on the SSCP-LU session indicating that the LU hasKielczewski, Kostick & Shih [Page 15]RFC 1666 SNANAU MIB August 1994 been powered off. Sending both is also acceptable. The result should be that the remote session LU partner will send an UNBIND to terminate the session. The default behavior indicated by the value of this object may be overridden for an LU instance. The override is performed by setting the snaLuAdminTerm object instance in the snaLuAdminTable to the desired value. A write operation to this object may immediately change the operational value reflected in snaNodeOperLuTermDefault depending on the Agent implementation." ::= { snaNodeAdminEntry 8 }snaNodeAdminMaxLu OBJECT-TYPE SYNTAX Integer32 MAX-ACCESS read-create STATUS current DESCRIPTION "The maximum number of LUs that may be activated for this Node. For PU2.1, this object refers to the number of dependent LUs. A write operation to this object will not change the operational value reflected in snaNodeOperMaxLu until the Node has been re-activated (e.g., after the next initialization of the SNA services)." ::= { snaNodeAdminEntry 9 }snaNodeAdminHostDescription OBJECT-TYPE SYNTAX DisplayString (SIZE(0..128)) MAX-ACCESS read-create STATUS current DESCRIPTION "The value identifies the remote host associated with this Node. Since SSCP Id's may not be unique across hosts, the host description is required to uniquely identify the SSCP. This object is only applicable to PU2.0 type Nodes. If the remote host is unknown, then the value is the null string. A write operation to this object may immediatelyKielczewski, Kostick & Shih [Page 16]RFC 1666 SNANAU MIB August 1994 change the operational value reflected in snaNodeOperHostDescription depending on the Agent implementation." ::= { snaNodeAdminEntry 10 }snaNodeAdminStopMethod OBJECT-TYPE SYNTAX INTEGER { other (1), normal (2), immed (3), force (4) } MAX-ACCESS read-create STATUS current DESCRIPTION "The value indicates the desired method to be used by the Agent to stop a Node (i.e., change the Node's operational state to inactive(1) ). The values have the following meaning: other (1) - used for proprietary methods not listed in this enumeration. normal(2) - deactivate only when there is no more activity on this Node (i.e., all data flows have been completed and all sessions have been terminated). immed(3) - deactivate immediately regardless of current activities on this Node. Wait for deactivation responses (from remote Node) before changing the Node state to inactive. force(4) - deactivate immediately regardless of current activities on this Node. Do not wait for deactivation responses (from remote Node) before changing the Node state to inactive. A write operation to this object may immediately change the operational value reflected in snaNodeOperStopMethod depending on the Agent implementation." ::= { snaNodeAdminEntry 11 }snaNodeAdminState OBJECT-TYPE SYNTAX INTEGER { inactive (1), active (2) } MAX-ACCESS read-createKielczewski, Kostick & Shih [Page 17]RFC 1666 SNANAU MIB August 1994 STATUS current DESCRIPTION "The value indicates the desired operational state of the SNA Node. This object is used by the Management Station to activate or deactivate the Node. If the current value in snaNodeOperState is 'active (2)', then setting this object to 'inactive (1)' will initiate the Node shutdown process using the method indicated by snaNodeOperStopMethod. If the current value in snaNodeOperState is 'inactive (1)', then setting this object to 'active (2)' will initiate the Node's activation. A Management Station can always set this object to 'active (2)' irrespective of the value in the snaOperEnablingMethod." ::= { snaNodeAdminEntry 12 }snaNodeAdminRowStatus OBJECT-TYPE SYNTAX RowStatus MAX-ACCESS read-create STATUS current DESCRIPTION "This object is used by a Management Station to create or delete the row entry in the snaNodeAdminTable following the RowStatus textual convention. Upon successful creation of the row, an Agent automatically creates a corresponding entry in the snaNodeOperTable with snaNodeOperState equal to 'inactive (1)'. Row deletion can be Management Station or Agent initiated: (a) The Management Station can set the value to 'destroy (6)' only when the value of snaNodeOperState of this Node instance is 'inactive (1)'. The Agent will then delete the rows corresponding to this Node instance from the snaNodeAdminTable and the snaNodeOperTable. (b) The Agent detects that a row is in the 'notReady (3)' state for greater than aKielczewski, Kostick & Shih [Page 18]RFC 1666 SNANAU MIB August 1994 default period of 5 minutes. (c) All rows with the snaNodeAdminRowStatus object's value of 'notReady (3)' will be removed upon the next initialization of the SNA services." ::= { snaNodeAdminEntry 13 }-- ***************************************************************-- The following object is updated when there is a change to-- the value of any object in the snaNodeAdminTable.-- ***************************************************************snaNodeAdminTableLastChange OBJECT-TYPE SYNTAX TimeStamp MAX-ACCESS read-only STATUS current DESCRIPTION "The value indicates the timestamp (e.g., the Agent's sysUpTime value) of the last change made to any object in the snaNodeAdminTable, including row deletions/additions (e.g., changes to snaNodeAdminRowStatus values). This object can be used to reduce frequent retrievals of the snaNodeAdminTable by a Management Station. It is expected that a Management Station will periodically poll this object and compare its current value with the previous one. A difference indicates that some Node configuration information has been changed. Only then will the Management Station retrieve the entire table." ::= { snaNode 2 }-- ***************************************************************-- The following table contains Node operational parameters.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -