📄 rfc2003.txt
字号:
Network Working Group C. PerkinsRequest for Comment: 2003 IBMCategory: Standards Track October 1996 IP Encapsulation within IPStatus of This Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.Abstract This document specifies a method by which an IP datagram may be encapsulated (carried as payload) within an IP datagram. Encapsulation is suggested as a means to alter the normal IP routing for datagrams, by delivering them to an intermediate destination that would otherwise not be selected by the (network part of the) IP Destination Address field in the original IP header. Encapsulation may serve a variety of purposes, such as delivery of a datagram to a mobile node using Mobile IP.1. Introduction This document specifies a method by which an IP datagram may be encapsulated (carried as payload) within an IP datagram. Encapsulation is suggested as a means to alter the normal IP routing for datagrams, by delivering them to an intermediate destination that would otherwise not be selected based on the (network part of the) IP Destination Address field in the original IP header. Once the encapsulated datagram arrives at this intermediate destination node, it is decapsulated, yielding the original IP datagram, which is then delivered to the destination indicated by the original Destination Address field. This use of encapsulation and decapsulation of a datagram is frequently referred to as "tunneling" the datagram, and the encapsulator and decapsulator are then considered to be the "endpoints" of the tunnel. In the most general tunneling case we have source ---> encapsulator --------> decapsulator ---> destination with the source, encapsulator, decapsulator, and destination being separate nodes. The encapsulator node is considered the "entryPerkins Standards Track [Page 1]RFC 2003 IP-within-IP October 1996 point" of the tunnel, and the decapsulator node is considered the "exit point" of the tunnel. There in general may be multiple source-destination pairs using the same tunnel between the encapsulator and decapsulator.2. Motivation The Mobile IP working group has specified the use of encapsulation as a way to deliver datagrams from a mobile node's "home network" to an agent that can deliver datagrams locally by conventional means to the mobile node at its current location away from home [8]. The use of encapsulation may also be desirable whenever the source (or an intermediate router) of an IP datagram must influence the route by which a datagram is to be delivered to its ultimate destination. Other possible applications of encapsulation include multicasting, preferential billing, choice of routes with selected security attributes, and general policy routing. It is generally true that encapsulation and the IP loose source routing option [10] can be used in similar ways to affect the routing of a datagram, but there are several technical reasons to prefer encapsulation: - There are unsolved security problems associated with the use of the IP source routing options. - Current Internet routers exhibit performance problems when forwarding datagrams that contain IP options, including the IP source routing options. - Many current Internet nodes process IP source routing options incorrectly. - Firewalls may exclude IP source-routed datagrams. - Insertion of an IP source route option may complicate the processing of authentication information by the source and/or destination of a datagram, depending on how the authentication is specified to be performed. - It is considered impolite for intermediate routers to make modifications to datagrams which they did not originate. These technical advantages must be weighed against the disadvantages posed by the use of encapsulation: - Encapsulated datagrams typically are larger than source routed datagrams.Perkins Standards Track [Page 2]RFC 2003 IP-within-IP October 1996 - Encapsulation cannot be used unless it is known in advance that the node at the tunnel exit point can decapsulate the datagram. Since the majority of Internet nodes today do not perform well when IP loose source route options are used, the second technical disadvantage of encapsulation is not as serious as it might seem at first.3. IP in IP Encapsulation To encapsulate an IP datagram using IP in IP encapsulation, an outer IP header [10] is inserted before the datagram's existing IP header, as follows: +---------------------------+ | | | Outer IP Header | | | +---------------------------+ +---------------------------+ | | | | | IP Header | | IP Header | | | | | +---------------------------+ ====> +---------------------------+ | | | | | | | | | IP Payload | | IP Payload | | | | | | | | | +---------------------------+ +---------------------------+ The outer IP header Source Address and Destination Address identify the "endpoints" of the tunnel. The inner IP header Source Address and Destination Addresses identify the original sender and recipient of the datagram, respectively. The inner IP header is not changed by the encapsulator, except to decrement the TTL as noted below, and remains unchanged during its delivery to the tunnel exit point. No change to IP options in the inner header occurs during delivery of the encapsulated datagram through the tunnel. If need be, other protocol headers such as the IP Authentication header [1] may be inserted between the outer IP header and the inner IP header. Note that the security options of the inner IP header MAY affect the choice of security options for the encapsulating (outer) IP header.Perkins Standards Track [Page 3]RFC 2003 IP-within-IP October 19963.1. IP Header Fields and Handling The fields in the outer IP header are set by the encapsulator as follows: Version 4 IHL The Internet Header Length (IHL) is the length of the outer IP header measured in 32-bit words [10]. TOS The Type of Service (TOS) is copied from the inner IP header. Total Length The Total Length measures the length of the entire encapsulated IP datagram, including the outer IP header, the inner IP header, and its payload. Identification, Flags, Fragment Offset These three fields are set as specified in [10]. However, if the "Don't Fragment" bit is set in the inner IP header, it MUST be set in the outer IP header; if the "Don't Fragment" bit is not set in the inner IP header, it MAY be set in the outer IP header, as described in Section 5.1. Time to Live The Time To Live (TTL) field in the outer IP header is set to a value appropriate for delivery of the encapsulated datagram to the tunnel exit point. Protocol 4 Header Checksum The Internet Header checksum [10] of the outer IP header.Perkins Standards Track [Page 4]RFC 2003 IP-within-IP October 1996 Source Address The IP address of the encapsulator, that is, the tunnel entry point. Destination Address The IP address of the decapsulator, that is, the tunnel exit point. Options Any options present in the inner IP header are in general NOT copied to the outer IP header. However, new options specific to the tunnel path MAY be added. In particular, any supported types of security options of the inner IP header MAY affect the choice of security options for the outer header. It is not expected that there be a one-to-one mapping of such options to the options or security headers selected for the tunnel. When encapsulating a datagram, the TTL in the inner IP header is decremented by one if the tunneling is being done as part of forwarding the datagram; otherwise, the inner header TTL is not changed during encapsulation. If the resulting TTL in the inner IP header is 0, the datagram is discarded and an ICMP Time Exceeded message SHOULD be returned to the sender. An encapsulator MUST NOT encapsulate a datagram with TTL = 0. The TTL in the inner IP header is not changed when decapsulating. If, after decapsulation, the inner datagram has TTL = 0, the decapsulator MUST discard the datagram. If, after decapsulation, the decapsulator forwards the datagram to one of its network interfaces, it will decrement the TTL as a result of doing normal IP forwarding. See also Section 4.4. The encapsulator may use any existing IP mechanisms appropriate for delivery of the encapsulated payload to the tunnel exit point. In particular, use of IP options is allowed, and use of fragmentation is allowed unless the "Don't Fragment" bit is set in the inner IP header. This restriction on fragmentation is required so that nodes employing Path MTU Discovery [7] can obtain the information they seek.3.2. Routing Failures Routing loops within a tunnel are particularly dangerous when they cause datagrams to arrive again at the encapsulator. Suppose a datagram arrives at a router for forwarding, and the routerPerkins Standards Track [Page 5]RFC 2003 IP-within-IP October 1996 determines that the datagram has to be encapsulated before further delivery. Then: - If the IP Source Address of the datagram matches the router's own IP address on any of its network interfaces, the router MUST NOT tunnel the datagram; instead, the datagram SHOULD be discarded. - If the IP Source Address of the datagram matches the IP address of the tunnel destination (the tunnel exit point is typically chosen by the router based on the Destination Address in the datagram's IP header), the router MUST NOT tunnel the datagram; instead, the datagram SHOULD be discarded. See also Section 4.4.4. ICMP Messages from within the Tunnel After an encapsulated datagram has been sent, the encapsulator may receive an ICMP [9] message from any intermediate router within the tunnel other than the tunnel exit point. The action taken by the encapsulator depends on the type of ICMP message received. When the received message contains enough information, the encapsulator MAY use the incoming message to create a similar ICMP message, to be sent to the originator of the original unencapsulated IP datagram (the original sender). This process will be referred to as "relaying" the ICMP message from the tunnel. ICMP messages indicating an error in processing a datagram include a copy of (a portion of) the datagram causing the error. Relaying an ICMP message requires that the encapsulator strip off the outer IP header from this returned copy of the original datagram. For cases in which the received ICMP message does not contain enough data to relay the message, see Section 5.4.1. Destination Unreachable (Type 3) ICMP Destination Unreachable messages are handled by the encapsulator depending upon their Code field. The model suggested here allows the tunnel to "extend" a network to include non-local (e.g., mobile) nodes. Thus, if the original destination in the unencapsulated datagram is on the same network as the encapsulator, certain Destination Unreachable Code values may be modified to conform to the suggested model.Perkins Standards Track [Page 6]RFC 2003 IP-within-IP October 1996 Network Unreachable (Code 0) An ICMP Destination Unreachable message SHOULD be returned to the original sender. If the original destination in the unencapsulated datagram is on the same network as the encapsulator, the newly generated Destination Unreachable message sent by the encapsulator MAY have Code 1 (Host Unreachable), since presumably the datagram arrived at the correct network and the encapsulator is trying to create the appearance that the original destination is local to that network even if it is not. Otherwise, if the encapsulator returns a Destination Unreachable message, the Code field MUST be set to 0 (Network Unreachable). Host Unreachable (Code 1) The encapsulator SHOULD relay Host Unreachable messages to the sender of the original unencapsulated datagram, if possible. Protocol Unreachable (Code 2) When the encapsulator receives an ICMP Protocol Unreachable message, it SHOULD send a Destination Unreachable message with Code 0 or 1 (see the discussion for Code 0) to the sender of the original unencapsulated datagram. Since the original sender did not use protocol 4 in sending the datagram, it would be meaningless to return Code 2 to that sender. Port Unreachable (Code 3) This Code should never be received by the encapsulator, since the outer IP header does not refer to any port number. It MUST NOT be relayed to the sender of the original unencapsulated datagram. Datagram Too Big (Code 4) The encapsulator MUST relay ICMP Datagram Too Big messages to the sender of the original unencapsulated datagram. Source Route Failed (Code 5) This Code SHOULD be handled by the encapsulator itself. It MUST NOT be relayed to the sender of the original unencapsulated datagram.Perkins Standards Track [Page 7]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -