📄 rfc2419.txt
字号:
RFC 2419 PPP DES Encryption v2 September 19986.1. Padding Considerations Since the DES algorithm operates on blocks of 8 octets, plain text packets which are of length not a multiple of 8 octets must be padded. This can be injurious to the interpretation of some protocols which do not contain an explicit length field in their protocol headers. Since there is no standard directory of protocols which are susceptible to corruption through padding, this can lead to confusion over which protocols should be protected against padding-induced corruption. Consequently, this specification requires that the unambiguous technique described below MUST be applied to ALL plain text packets. The method of padding is based on that described for the LCP Self- Describing-Padding (SDP) option (as defined in RFC 1570 [4]), but differs in two respects: first, maximum-pad value is fixed to be 8, and second, the method is to be applied to ALL packets, not just "specifically identified protocols". Plain text which is not a multiple of 8 octets long MUST be padded prior to encrypting the plain text with sufficient octets in the sequence of octets 1, 2, 3 ... 7 to make the plain text a multiple of 8 octets. Plain text which is already a multiple of 8 octets may require padding with a further 8 octets (1, 2, 3 ... 8). These additional octets MUST be appended prior to encrypting the plain text if the last octet of the plain text has a value of 1 through 8, inclusive. After the peer has decrypted the cipher text, it strips off the Self-Describing-Padding octets, to recreate the original plain text. Note that after decrypting, only the content of the last octet need be examined to determine how many pad bytes should be removed. However, the peer SHOULD discard the frame if all the octets forming the padding do not match the scheme just described. The padding operation described above is performed independently of whether or not the LCP Self-Describing-Padding (SDP) option has been negotiated. If it has, SDP would be applied to the packet as a whole after it had been ciphered and after the Encryption Protocol Identifiers had been prepended.Sklower & Meyer Standards Track [Page 7]RFC 2419 PPP DES Encryption v2 September 19986.2. Generation of the Ciphertext In this discussion, E[k] will denote the basic DES cipher determined by a 56-bit key k acting on 64 bit blocks. and D[k] will denote the corresponding decryption mechanism. The padded plaintext described in the previous section then becomes a sequence of 64 bit blocks P[i] (where i ranges from 1 to n). The circumflex character (^) represents the bit-wise exclusive-or operation applied to 64-bit blocks. When encrypting the first packet to be transmitted in the opened state let C[0] be the result of applying E[k] to the Initial Nonce received in the peer's ECP DESE option; otherwise let C[0] be the final block of the previously transmitted packet. The ciphertext for the packet is generated by the iterative process C[i] = E[k](P[i] ^ C[i-1]) for i running between 1 and n.6.3. Retrieval of the Plaintext When decrypting the first packet received in the opened state, let C[0] be the result of applying E[k] to the Initial Nonce transmitted in the ECP DESE option. The first packet will have sequence number zero. For subsequent packets, let C[0] be the final block of the previous packet in sequence space. Decryption is then accomplished by P[i] = C[i-1] ^ D[k](C[i]), for i running between 1 and n.6.4. Recovery after Packet Loss Packet loss is detected when there is a discontinuity in the sequence numbers of consecutive packets. Suppose packet number N - 1 has an unrecoverable error or is otherwise lost, but packets N and N + 1 are received correctly. Since the algorithm in the previous section requires C[0] for packet N to be C[last] for packet N - 1, it will be impossible to decode packet N. However, all packets N + 1 and following can be decoded in the usual way, since all that is required is the last block of ciphertext of the previous packet (in this case packet N, which WAS received).Sklower & Meyer Standards Track [Page 8]RFC 2419 PPP DES Encryption v2 September 19987. MRU Considerations Because padding can occur, and because there is an additional protocol field in effect, implementations should take into account the growth of the packets. As an example, if PFC had been negotiated, and if the MRU before had been exactly a multiple of 8, then the plaintext resulting combining a full sized data packets with a one byte protocol field would require an additional 7 bytes of padding, and the sequence number would be an additional 2 bytes so that the information field in the DESE protocol is now 10 bytes larger than that in the original packet. Because the convention is that PPP options are independent of each other, negotiation of DESE does not, by itself, automatically increase the MRU value.8. Differences from RFC 19698.1. When to Pad In RFC 1969, the method of Self-Describing Padding was not applied to all packets transmitted using DESE. Following the method of the SDP option itself, only "specifically identified protocols", were to be padded. Protocols with an explicit length identifier were exempt. (Examples included non-VJ-compressed IP, XNS, CLNP). In this speficiation, the method is applied to ALL packets. Secondly, this specification is clarified as being completely independent of the Self-Describing-Padding option for PPP, and fixes the maximum number of padding octets as 8.8.2. Assigned Numbers Since this specification could theoretically cause misinterpretation of a packet transmitted according to the previous specification, a new type field number has been assigned for the DESE-bis protocol8.3. Minor Editorial Changes This specification has been designated a standards track document. Some other language has been changed for greater clarity.9. Security Considerations This proposal is concerned with providing confidentiality solely. It does not describe any mechanisms for integrity, authentication or nonrepudiation. It does not guarantee that any message received has not been modified in transit through replay, cut-and-paste or activeSklower & Meyer Standards Track [Page 9]RFC 2419 PPP DES Encryption v2 September 1998 tampering. It does not provide authentication of the source of any packet received, or protect against the sender of any packet denying its authorship. This proposal relies on exterior and unspecified methods for authentication and retrieval of shared secrets. It proposes no new technology for privacy, but merely describes a convention for the application of the DES cipher to data transmission between PPP implementation. Any methodology for the protection and retrieval of shared secrets, and any limitations of the DES cipher are relevant to the use described here.10. References [1] Simpson, W., Editor, "The Point-to-Point Protocol (PPP)", STD 51, RFC 1661, July 1994. [2] Meyer, G., "The PPP Encryption Protocol (ECP)", RFC 1968, June 1996. [3] Sklower, K., Lloyd, B., McGregor, G., Carr, D., and T. Coradetti, "The PPP Multilink Protocol (MP)", RFC 1990, August 1996. [4] Simpson, W., Editor, "PPP LCP Extensions", RFC 1570, January 1994. [5] National Bureau of Standards, "Data Encryption Standard", FIPS PUB 46 (January 1977). [6] National Bureau of Standards, "DES Modes of Operation", FIPS PUB 81 (December 1980). [7] Schneier, B., "Applied Cryptography - Protocols Algorithms, and source code in C", John Wiley & Sons, Inc. 1994. There is an errata associated with the book, and people can get a copy by sending e-mail to schneier@counterpane.com. [8] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.Sklower & Meyer Standards Track [Page 10]RFC 2419 PPP DES Encryption v2 September 199811. Authors' Addresses Keith Sklower Computer Science Department 339 Soda Hall, Mail Stop 1776 University of California Berkeley, CA 94720-1776 Phone: (510) 642-9587 EMail: sklower@CS.Berkeley.EDU Gerry M. Meyer Cisco Systems Ltd. Bothwell House, Pochard Way, Strathclyde Business Park, Bellshill, ML4 3HB Scotland, UK Phone: (UK) (pending) Fax: (UK) (pending) Email: gemeyer@cisco.comSklower & Meyer Standards Track [Page 11]RFC 2419 PPP DES Encryption v2 September 199812. Full Copyright Statement Copyright (C) The Internet Society (1998). All Rights Reserved. This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English. The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns. This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.Sklower & Meyer Standards Track [Page 12]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -