📄 rfc2419.txt
字号:
Network Working Group K. SklowerRequest for Comments: 2419 University of California, BerkeleyObsoletes: 1969 G. MeyerCategory: Standards Track Shiva September 1998 The PPP DES Encryption Protocol, Version 2 (DESE-bis)Status of this Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.Copyright Notice Copyright (C) The Internet Society (1998). All Rights Reserved.Abstract The Point-to-Point Protocol (PPP) [1] provides a standard method for transporting multi-protocol datagrams over point-to-point links. The PPP Encryption Control Protocol (ECP) [2] provides a method to negotiate and utilize encryption protocols over PPP encapsulated links. This document provides specific details for the use of the DES standard [5, 6] for encrypting PPP encapsulated packets.Acknowledgements The authors extend hearty thanks to Fred Baker of Cisco, Philip Rakity of Flowpoint, and William Simpson of Daydreamer for helpful improvements to the clarity and correctness of the document.Table of Contents 1. Introduction ................................................ 2 1.1. Motivation ................................................ 2 1.2. Conventions ............................................... 2 2. General Overview ............................................ 2 3. Structure of This Specification ............................. 4 4. DESE Configuration Option for ECP ........................... 4 5. Packet Format for DESE ...................................... 5Sklower & Meyer Standards Track [Page 1]RFC 2419 PPP DES Encryption v2 September 1998 6. Encryption .................................................. 6 6.1. Padding Considerations .................................... 7 6.2. Generation of the Ciphertext .............................. 8 6.3. Retrieval of the Plaintext ................................ 8 6.4. Recovery after Packet Loss ................................ 8 7. MRU Considerations .......................................... 9 8. Differences from RFC 1969 ................................... 9 8.1. When to Pad ............................................... 9 8.2. Assigned Numbers .......................................... 9 8.3. Minor Editorial Changes ................................... 9 9. Security Considerations ..................................... 9 10. References ................................................. 10 11. Authors' Addresses ......................................... 11 12. Full Copyright Statement ................................... 121. Introduction1.1. Motivation The purpose of this memo is two-fold: to show how one specifies the necessary details of a "data" or "bearer" protocol given the context of the generic PPP Encryption Control Protocol, and also to provide at least one commonly-understood means of secure data transmission between PPP implementations. The DES encryption algorithm is a well studied, understood and widely implemented encryption algorithm. The DES cipher was designed for efficient implementation in hardware, and consequently may be relatively expensive to implement in software. However, its pervasiveness makes it seem like a reasonable choice for a "model" encryption protocol. Source code implementing DES in the "Electronic Code Book Mode" can be found in [7]. US export laws forbid the inclusion of compilation-ready source code in this document.1.2. Conventions The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [8].2. General Overview The purpose of encrypting packets exchanged between two PPP implementations is to attempt to insure the privacy of communication conducted via the two implementations. The encryption process depends on the specification of an encryption algorithm and a sharedSklower & Meyer Standards Track [Page 2]RFC 2419 PPP DES Encryption v2 September 1998 secret (usually involving at least a key) between the sender and receiver. Generally, the encryptor will take a PPP packet including the protocol field, apply the chosen encryption algorithm, place the resulting cipher text (and in this specification, an explicit sequence number) in the information field of another PPP packet. The decryptor will apply the inverse algorithm and interpret the resulting plain text as if it were a PPP packet which had arrived directly on the interface. The means by which the secret becomes known to both communicating elements is beyond the scope of this document; usually some form of manual configuration is involved. Implementations might make use of PPP authentication, or the EndPoint Identifier Option described in PPP Multilink [3], as factors in selecting the shared secret. If the secret can be deduced by analysis of the communication between the two parties, then no privacy is guaranteed. While the US Data Encryption Standard (DES) algorithm [5, 6] provides multiple modes of use, this specification selects the use of only one mode in conjunction with the PPP Encryption Control Protocol (ECP): the Cipher Block Chaining (CBC) mode. In addition to the US Government publications cited above, the CBC mode is also discussed in [7], although no C source code is provided for it per se. The initialization vector for this mode is deduced from an explicit 64-bit nonce, which is exchanged in the clear during the negotiation phase. The 56-bit key required by all DES modes is established as a shared secret between the implementations. One reason for choosing the chaining mode is that it is generally thought to require more computation resources to deduce a 64 bit key used for DES encryption by analysis of the encrypted communication stream when chaining mode is used, compared with the situation where each block is encrypted separately with no chaining. Certainly, identical sequences of plaintext will produce different ciphers when chaining mode is in effect, thus complicating analysis. However, if chaining is to extend beyond packet boundaries, both the sender and receiver must agree on the order the packets were encrypted. Thus, this specification provides for an explicit 16 bit sequence number to sequence decryption of the packets. This mode of operation even allows recovery from occasional packet loss; details are also given below.Sklower & Meyer Standards Track [Page 3]RFC 2419 PPP DES Encryption v2 September 19983. Structure of This Specification The PPP Encryption Control Protocol (ECP), provides a framework for negotiating parameters associated with encryption, such as choosing the algorithm. It specifies the assigned numbers to be used as PPP protocol numbers for the "data packets" to be carried as the associated "data protocol", and describes the state machine. Thus, a specification for use in that matrix need only describe any additional configuration options required to specify a particular algorithm, and the process by which one encrypts/decrypts the information once the Opened state has been achieved.4. DESE Configuration Option for ECP Description The ECP DESE Configuration Option indicates that the issuing implementation is offering to employ this specification for decrypting communications on the link, and may be thought of as a request for its peer to encrypt packets in this manner. The ECP DESE Configuration Option has the following fields, which are transmitted from left to right: Figure 1: ECP DESE Configuration Option 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 3 | Length | Initial Nonce ... +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Type Type = 3, to indicate the DESE-bis protocol. The former value 1 indicating the previous DESE specification is deprecated, i.e. systems implementing this specification MUST NOT offer the former value 1 in a configure-request and MUST configure-reject the former value on receipt of a configure-request containing it. Length 10Sklower & Meyer Standards Track [Page 4]RFC 2419 PPP DES Encryption v2 September 1998 Initial Nonce This field is an 8 byte quantity which is used by the peer implementation to encrypt the first packet transmitted after the sender reaches the opened state. To guard against replay attacks, the implementation SHOULD offer a different value during each ECP negotiation. An example might be to use the number of seconds since Jan 1st, 1970 (GMT/UT) in the upper 32 bits, and the current number of nanoseconds relative to the last second mark in the lower 32 bits. Its formulaic role is described in the Encryption section below.5. Packet Format for DESE Description The DESE packets themselves have the following fields: Figure 2: DES Encryption Protocol Packet Format 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Address | Control | 0000 | Protocol ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Seq. No. High | Seq. No. Low | Ciphertext ... +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Address and Control These fields MUST be present unless the PPP Address and Control Field Compression option (ACFC) has been negotiated. Protocol ID The value of this field is 0x53 or 0x55; the latter indicates that ciphertext includes headers for the Multilink Protocol, and REQUIRES that the Individual Link Encryption Control Protocol has reached the opened state. The leading zero MAY be absent if the PPP Protocol Field Compression option (PFC) has been negotiated.Sklower & Meyer Standards Track [Page 5]RFC 2419 PPP DES Encryption v2 September 1998 Sequence Number These 16-bit numbers are assigned by the encryptor sequentially starting with 0 (for the first packet transmitted once ECP has reached the opened state. Ciphertext The generation of this data is described in the next section.6. Encryption Once the ECP has reached the Opened state, the sender MUST NOT apply the encryption procedure to LCP packets nor ECP packets. If the async control character map option has been negotiated on the link, the sender applies mapping after the encryption algorithm has been run. The encryption algorithm is generally to pad the Protocol and Information fields of a PPP packet to some multiple of 8 bytes, and apply DES in Chaining Block Cipher mode with a 56-bit key K. There are a lot of details concerning what constitutes the Protocol and Information fields, in the presence or non-presence of Multilink, and whether the ACFC and PFC options have been negotiated, and the sort of padding chosen. Regardless of whether ACFC has been negotiated on the link, the sender applies the encryption procedure to only that portion of the packet excluding the address and control field. If the Multilink Protocol has been negotiated and encryption is to be construed as being applied to each link separately, then the encryption procedure is to be applied to the (possibly extended) protocol and information fields of the packet in the Multilink Protocol. If the Multilink Protocol has been negotiated and encryption is to be construed as being applied to the bundle, then the multilink procedure is to be applied to the resulting DESE packets.Sklower & Meyer Standards Track [Page 6]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -