⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rfc2279.txt

📁 著名的RFC文档,其中有一些文档是已经翻译成中文的的.
💻 TXT
📖 第 1 页 / 共 2 页
字号:
Network Working Group                                       F. YergeauRequest for Comments: 2279                           Alis TechnologiesObsoletes: 2044                                           January 1998Category: Standards Track              UTF-8, a transformation format of ISO 10646Status of this Memo   This document specifies an Internet standards track protocol for the   Internet community, and requests discussion and suggestions for   improvements.  Please refer to the current edition of the "Internet   Official Protocol Standards" (STD 1) for the standardization state   and status of this protocol.  Distribution of this memo is unlimited.Copyright Notice   Copyright (C) The Internet Society (1998).  All Rights Reserved.Abstract   ISO/IEC 10646-1 defines a multi-octet character set called the   Universal Character Set (UCS) which encompasses most of the world's   writing systems. Multi-octet characters, however, are not compatible   with many current applications and protocols, and this has led to the   development of a few so-called UCS transformation formats (UTF), each   with different characteristics.  UTF-8, the object of this memo, has   the characteristic of preserving the full US-ASCII range, providing   compatibility with file systems, parsers and other software that rely   on US-ASCII values but are transparent to other values. This memo   updates and replaces RFC 2044, in particular addressing the question   of versions of the relevant standards.1.  Introduction   ISO/IEC 10646-1 [ISO-10646] defines a multi-octet character set   called the Universal Character Set (UCS), which encompasses most of   the world's writing systems.  Two multi-octet encodings are defined,   a four-octet per character encoding called UCS-4 and a two-octet per   character encoding called UCS-2, able to address only the first 64K   characters of the UCS (the Basic Multilingual Plane, BMP), outside of   which there are currently no assignments.   It is noteworthy that the same set of characters is defined by the   Unicode standard [UNICODE], which further defines additional   character properties and other application details of great interest   to implementors, but does not have the UCS-4 encoding.  Up to theYergeau                     Standards Track                     [Page 1]RFC 2279                         UTF-8                      January 1998   present time, changes in Unicode and amendments to ISO/IEC 10646 have   tracked each other, so that the character repertoires and code point   assignments have remained in sync.  The relevant standardization   committees have committed to maintain this very useful synchronism.   The UCS-2 and UCS-4 encodings, however, are hard to use in many   current applications and protocols that assume 8 or even 7 bit   characters.  Even newer systems able to deal with 16 bit characters   cannot process UCS-4 data. This situation has led to the development   of so-called UCS transformation formats (UTF), each with different   characteristics.   UTF-1 has only historical interest, having been removed from ISO/IEC   10646.  UTF-7 has the quality of encoding the full BMP repertoire   using only octets with the high-order bit clear (7 bit US-ASCII   values, [US-ASCII]), and is thus deemed a mail-safe encoding   ([RFC2152]).  UTF-8, the object of this memo, uses all bits of an   octet, but has the quality of preserving the full US-ASCII range:   US-ASCII characters are encoded in one octet having the normal US-   ASCII value, and any octet with such a value can only stand for an   US-ASCII character, and nothing else.   UTF-16 is a scheme for transforming a subset of the UCS-4 repertoire   into pairs of UCS-2 values from a reserved range.  UTF-16 impacts   UTF-8 in that UCS-2 values from the reserved range must be treated   specially in the UTF-8 transformation.   UTF-8 encodes UCS-2 or UCS-4 characters as a varying number of   octets, where the number of octets, and the value of each, depend on   the integer value assigned to the character in ISO/IEC 10646.  This   transformation format has the following characteristics (all values   are in hexadecimal):   -  Character values from 0000 0000 to 0000 007F (US-ASCII repertoire)      correspond to octets 00 to 7F (7 bit US-ASCII values). A direct      consequence is that a plain ASCII string is also a valid UTF-8      string.   -  US-ASCII values do not appear otherwise in a UTF-8 encoded      character stream.  This provides compatibility with file systems      or other software (e.g. the printf() function in C libraries) that      parse based on US-ASCII values but are transparent to other      values.   -  Round-trip conversion is easy between UTF-8 and either of UCS-4,      UCS-2.Yergeau                     Standards Track                     [Page 2]RFC 2279                         UTF-8                      January 1998   -  The first octet of a multi-octet sequence indicates the number of      octets in the sequence.   -  The octet values FE and FF never appear.   -  Character boundaries are easily found from anywhere in an octet      stream.   -  The lexicographic sorting order of UCS-4 strings is preserved.  Of      course this is of limited interest since the sort order is not      culturally valid in either case.   -  The Boyer-Moore fast search algorithm can be used with UTF-8 data.   -  UTF-8 strings can be fairly reliably recognized as such by a      simple algorithm, i.e. the probability that a string of characters      in any other encoding appears as valid UTF-8 is low, diminishing      with increasing string length.   UTF-8 was originally a project of the X/Open Joint   Internationalization Group XOJIG with the objective to specify a File   System Safe UCS Transformation Format [FSS-UTF] that is compatible   with UNIX systems, supporting multilingual text in a single encoding.   The original authors were Gary Miller, Greger Leijonhufvud and John   Entenmann.  Later, Ken Thompson and Rob Pike did significant work for   the formal UTF-8.   A description can also be found in Unicode Technical Report #4 and in   the Unicode Standard, version 2.0 [UNICODE].  The definitive   reference, including provisions for UTF-16 data within UTF-8, is   Annex R of ISO/IEC 10646-1 [ISO-10646].2.  UTF-8 definition   In UTF-8, characters are encoded using sequences of 1 to 6 octets.   The only octet of a "sequence" of one has the higher-order bit set to   0, the remaining 7 bits being used to encode the character value. In   a sequence of n octets, n>1, the initial octet has the n higher-order   bits set to 1, followed by a bit set to 0.  The remaining bit(s) of   that octet contain bits from the value of the character to be   encoded.  The following octet(s) all have the higher-order bit set to   1 and the following bit set to 0, leaving 6 bits in each to contain   bits from the character to be encoded.   The table below summarizes the format of these different octet types.   The letter x indicates bits available for encoding bits of the UCS-4   character value.Yergeau                     Standards Track                     [Page 3]RFC 2279                         UTF-8                      January 1998   UCS-4 range (hex.)           UTF-8 octet sequence (binary)   0000 0000-0000 007F   0xxxxxxx   0000 0080-0000 07FF   110xxxxx 10xxxxxx   0000 0800-0000 FFFF   1110xxxx 10xxxxxx 10xxxxxx   0001 0000-001F FFFF   11110xxx 10xxxxxx 10xxxxxx 10xxxxxx   0020 0000-03FF FFFF   111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx   0400 0000-7FFF FFFF   1111110x 10xxxxxx ... 10xxxxxx   Encoding from UCS-4 to UTF-8 proceeds as follows:   1) Determine the number of octets required from the character value      and the first column of the table above.  It is important to note      that the rows of the table are mutually exclusive, i.e. there is      only one valid way to encode a given UCS-4 character.   2) Prepare the high-order bits of the octets as per the second column      of the table.   3) Fill in the bits marked x from the bits of the character value,      starting from the lower-order bits of the character value and      putting them first in the last octet of the sequence, then the      next to last, etc. until all x bits are filled in.      The algorithm for encoding UCS-2 (or Unicode) to UTF-8 can be      obtained from the above, in principle, by simply extending each      UCS-2 character with two zero-valued octets.  However, pairs of      UCS-2 values between D800 and DFFF (surrogate pairs in Unicode      parlance), being actually UCS-4 characters transformed through      UTF-16, need special treatment: the UTF-16 transformation must be      undone, yielding a UCS-4 character that is then transformed as      above.      Decoding from UTF-8 to UCS-4 proceeds as follows:   1) Initialize the 4 octets of the UCS-4 character with all bits set      to 0.   2) Determine which bits encode the character value from the number of      octets in the sequence and the second column of the table above      (the bits marked x).   3) Distribute the bits from the sequence to the UCS-4 character,      first the lower-order bits from the last octet of the sequence and      proceeding to the left until no x bits are left.      If the UTF-8 sequence is no more than three octets long, decoding      can proceed directly to UCS-2.Yergeau                     Standards Track                     [Page 4]RFC 2279                         UTF-8                      January 1998        NOTE -- actual implementations of the decoding algorithm above        should protect against decoding invalid sequences.  For        instance, a naive implementation may (wrongly) decode the        invalid UTF-8 sequence C0 80 into the character U+0000, which        may have security consequences and/or cause other problems.  See        the Security Considerations section below.   A more detailed algorithm and formulae can be found in [FSS_UTF],   [UNICODE] or Annex R to [ISO-10646].3.  Versions of the standards   ISO/IEC 10646 is updated from time to time by published amendments;   similarly, different versions of the Unicode standard exist: 1.0, 1.1   and 2.0 as of this writing.  Each new version obsoletes and replaces   the previous one, but implementations, and more significantly data,   are not updated instantly.   In general, the changes amount to adding new characters, which does   not pose particular problems with old data.  Amendment 5 to ISO/IEC   10646, however, has moved and expanded the Korean Hangul block,   thereby making any previous data containing Hangul characters invalid   under the new version.  Unicode 2.0 has the same difference from   Unicode 1.1. The official justification for allowing such an   incompatible change was that no implementations and no data   containing Hangul existed, a statement that is likely to be true but   remains unprovable.  The incident has been dubbed the "Korean mess",   and the relevant committees have pledged to never, ever again make   such an incompatible change.   New versions, and in particular any incompatible changes, have q   conseuences regarding MIME character encoding labels, to be discussed   in section 5.4.  Examples   The UCS-2 sequence "A<NOT IDENTICAL TO><ALPHA>." (0041, 2262, 0391,   002E) may be encoded in UTF-8 as follows:   41 E2 89 A2 CE 91 2E   The UCS-2 sequence representing the Hangul characters for the Korean   word "hangugo" (D55C, AD6D, C5B4) may be encoded as follows:   ED 95 9C EA B5 AD EC 96 B4Yergeau                     Standards Track                     [Page 5]

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -