📄 rfc2705.txt
字号:
+------- +---------------+| (line) ===|analog endpoint| -------- Connections +---------------+| +------- Media gateways should be able to establish several connections between the endpoint and the packet networks, or between the endpoint and other endpoints in the same gateway. The audio signals originating from these connections shall be mixed according to the connection "mode", as specified later in this document. The precise number of connections that an endpoint support is a characteristic of the gateway, and may in fact vary according with the allocation of resource within the gateway. A typical gateway should however be able to support two or three connections per endpoint, in order to provide services such as "call waiting" or "three ways calling".2.1.1.3. Annoucement server access point An announcement server endpoint provides acces to an announcement service. Under requests from the call agent, the announcement server will "play" a specified announcement. The requests from the call agent will follow the event signalling and reporting procedures defined in MGCP. +----------------------+ | Announcement endpoint| -------- Connection +----------------------+ A given announcement endpoint is not supposed to support more than one connection at a time. If several connections were established to the same endpoint, then the same announcements would be played simultaneously over all the connections. Connections to an announcement server are typically oneway, or "half duplex" -- the announcement server is not expected to listen the audio signals from the connection.2.1.1.4. Interactive Voice Response access point An Interactive Voice Response (IVR) endpoint provides acces to an IVR service. Under requests from the call agent, the IVR server will "play" announcements and tones, and will "listen" to responses from the user. The requests from the call agent will follow the event signalling and reporting procedures defined in MGCP.Arango, et al. Informational [Page 12]RFC 2705 Media Gateway Control Protocol (MGCP) October 1999 +-------------+ | IVR endpoint| -------- Connection +-------------+ A given IVR endpoint is not supposed to support more than one connection at a time. If several connections were established to the same endpoint, then the same tones and announcements would be played simultaneously over all the connections.2.1.1.5. Conference bridge access point A conference bridge endpoint is used to provide access to a specific conference. +------- +--------------------------+| |Conference bridge endpoint| -------- Connections +--------------------------+| +------- Media gateways should be able to establish several connections between the endpoint and the packet networks, or between the endpoint and other endpoints in the same gateway. The signals originating from these connections shall be mixed according to the connection "mode", as specified later in this document. The precise number of connections that an endpoint support is a characteristic of the gateway, and may in fact vary according with the allocation of resource within the gateway.2.1.1.6. Packet relay A packet relay endpoint is a specific form of conference bridge, that typically only supports two connections. Packets relays can be found in firewalls between a protected and an open network, or in transcoding servers used to provide interoperation between incompatible gateways, for example gateways that do not support compatible compression algorithms, or gateways that operate over different transmission networks such as IP and ATM. +------- +---------------------+ | |Packet relay endpoint| 2 connections +---------------------+ | +-------Arango, et al. Informational [Page 13]RFC 2705 Media Gateway Control Protocol (MGCP) October 19992.1.1.7. Wiretap access point A wiretap access point provides access to a wiretap service, providing either a recording or a life playback of a connection. +-----------------+ | Wiretap endpoint| -------- Connection +-----------------+ A given wiretap endpoint is not supposed to support more than one connection at a time. If several connections were established to the same endpoint, then the recording or playback would mix the audio signals received on this connections. Connections to an wiretap endpoint are typically oneway, or "half duplex" -- the wiretap server is not expected to signal its presence in a call.2.1.1.8. ATM "trunk side" interface. ATM "trunk side" endpoints are typically found when one or several ATM permanent virtual circuits are used as a replacement for the classic "TDM" trunks linking switches. When ATM/AAL2 is used, several trunks or channels are multiplexed on a single virtual circuit; each of these trunks correspond to a single endpoint. +------- +------------------+| (channel) = |ATM trunk endpoint| -------- Connections +------------------+| +------- Media gateways should be able to establish several connections between the endpoint and the packet networks, or between the endpoint and other endpoints in the same gateway. The signals originating from these connections shall be mixed according to the connection "mode", as specified later in this document. The precise number of connections that an endpoint support is a characteristic of the gateway, and may in fact vary according with the allocation of resource within the gateway.Arango, et al. Informational [Page 14]RFC 2705 Media Gateway Control Protocol (MGCP) October 19992.1.2. Endpoint identifiers Endpoints identifiers have two components that both are case insensitive: * the domain name of the gateway that is managing the endpoint, * a local name within that gateway, The syntax of the local name depends on the type of endpoint being named. However, the local name for each of these types is naturally hierarchical, beginning with a term which identifies the physical gateway containing the given endpoint and ending in a term which specifies the individual endpoint concerned. With this in mind, the following rules for construction and interpretation of the Entity Name field for these entity types MUST be supported: 1) The individual terms of the naming path MUST be separated by a single slash ("/", ASCII 2F hex). 2) The individual terms are character strings composed of letters, digits or other printable characters, with the exception of characters used as delimitors ("/", "@"), characters used for wildcarding ("*", "$") and white spaces. 3) Wild-carding is represented either by an asterisk ("*") or a dollar sign ("$") for the terms of the naming path which are to be wild-carded. Thus, if the full naming path looks like term1/term2/term3 then the Entity Name field looks like this depending on which terms are wild-carded: */term2/term3 if term1 is wild-carded term1/*/term3 if term2 is wild-carded term1/term2/* if term3 is wild-carded term1/*/* if term2 and term3 are wild-carded, etc. In each of these examples a dollar sign could have appeared instead of an asterisk.Arango, et al. Informational [Page 15]RFC 2705 Media Gateway Control Protocol (MGCP) October 1999 4) A term represented by an asterisk is to be interpreted as: "use ALL values of this term known within the scope of the Media Gateway". A term represented by a dollar sign is to be interpreted as: "use ANY ONE value of this term known within the scope of the Media Gateway". The description of a specific command may add further criteria for selection within the general rules given here. If the Media Gateway controls multiple physical gateways, the first term of the naming MUST identify the physical gateway containing the desired entity. If the Media Gateway controls only a single physical gateway, the first term of the naming string MAY identify that physical gateway, depending on local practice. A local name that is composed of only a wildcard character refers to either all (*) or any ($) endpoints within the media gateway. In the case of trunking gateways, endpoints are trunk circuits linking a gateway to a telephone switch. These circuits are typically grouped into a digital multiplex, that is connected to the gateway by a physical interface. Such circuits are named in three contexts: * In the ISUP protocol, trunks are grouped into trunk groups, identified by the SS7 point codes of the switches that the group connects. Circuits within a trunk group are identified by a circuit number (CIC in ISUP). * In the gateway configuration files, physical interfaces are typically identified by the name of the interface, an arbitrary text string. When the interface multiplexes several circuits, individual circuits are typically identified by a circuit number. * In MGCP, the endpoints are identified by an endpoint identifier. The Call Agents use configuration databases to map ranges of circuit numbers within an ISUP trunk group to corresponding ranges of circuits in a multiplex connected to a gateway through a physical interface. The gateway will be identified, in MGCP, by a domain name. The local name will be structured to encode both the name of the physical interface, for example X35V3+A4, and the circuit number within the multiplex connected to the interface, for example 13. The circuit number will be separated from the name of the interface by a fraction bar, as in: X35V3+A4/13Arango, et al. Informational [Page 16]RFC 2705 Media Gateway Control Protocol (MGCP) October 1999 Other types of endpoints will use different conventions. For example, in gateways were physical interfaces by construction only control one circuit, the circuit number will be omitted. The exact syntax of such names should be specified in the corresponding server specification.2.1.3. Calls and connections Connections are created on the call agent on each endpoint that will be involved in the "call." In the classic example of a connection between two "DS0" endpoints (EP1 and EP2), the call agents controlling the end points will establish two connections (C1 and C2): +---+ +---+ (channel1) ===|EP1|--(C1)--... ...(C2)--|EP2|===(channel2) +---+ +---+ Each connection will be designated locally by a connection identifier, and will be characterized by connection attributes. When the two endpoints are located on gateways that are managed by the same call agent, the creation is done via the three following steps: 1) The call agent asks the first gateway to "create a connection" on the first endpoint. The gateway allocates resources to that connection, and respond to the command by providing a "session description." The session description contains the information
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -