📄 rfc2705.txt
字号:
purpose of transmitting data between these endpoints. Once this association is established for both endpoints, data transfer between these endpoints can take place. A multipoint connection is established by connecting the endpoint to a multipoint session. Connections can be established over several types of bearer networks: * Transmission of audio packets using RTP and UDP over a TCP/IP network. * Transmission of audio packets using AAL2, or another adaptation layer, over an ATM network. * Transmission of packets over an internal connection, for example the TDM backplane or the interconnection bus of a gateway. This is used, in particular, for "hairpin" connections, connections that terminate in a gateway but are immediately rerouted over the telephone network. For point-to-point connections the endpoints of a connection could be in separate gateways or in the same gateway.Arango, et al. Informational [Page 6]RFC 2705 Media Gateway Control Protocol (MGCP) October 19991.1. Relation with the H.323 standards MGCP is designed as an internal protocol within a distributed system that appears to the outside as a single VoIP gateway. This system is composed of a Call Agent, that may or may not be distributed over several computer platforms, and of a set of gateways, including at least one "media gateway" that perform the conversion of media signals between circuits and packets, and at least one "signalling gateway" when connecting to an SS7 controlled network. In a typical configuration, this distributed gateway system will interface on one side with one or more telephony (i.e. circuit) switches, and on the other side with H.323 conformant systems, as indicated in the following table: ___________________________________________________________________ | Functional| Phone | Terminating | H.323 conformant | | Plane | switch | Entity | systems | |___________|____________|_________________|_______________________| | Signaling | Signaling | Call agent | Signaling exchanges | | Plane | exchanges | | with the call agent | | | through | | through H.225/RAS and| | | SS7/ISUP | | H.225/Q.931. | |___________|____________|_________________|_______________________| | | | | Possible negotiation | | | | | of logical channels | | | | | and transmission | | | | | parameters through | | | | | H.245 with the call | | | | | agent. | |___________|____________|_________________|_______________________| | | | Internal | | | | | synchronization| | | | | through MGCP | | |___________|____________|_________________|_______________________| | Bearer | Connection| Telephony | Transmission of VOIP | | Data | through | gateways | data using RTP | | Transport | high speed| | directly between the | | Plane | trunk | | H.323 station and the| | | groups | | gateway. | |___________|____________|_________________|_______________________| In the MGCP model, the gateways focus on the audio signal translation function, while the Call Agent handles the signaling and call processing functions. As a consequence, the Call Agent implements the "signaling" layers of the H.323 standard, and presents itself as an "H.323 Gatekeeper" or as one or more "H.323 Endpoints" to the H.323 systems.Arango, et al. Informational [Page 7]RFC 2705 Media Gateway Control Protocol (MGCP) October 19991.2. Relation with the IETF standards While H.323 is the recognized standard for VoIP terminals, the IETF has also produced specifications for other types of multi-media applications. These other specifications include: * the Session Description Protocol (SDP), RFC 2327, * the Session Announcement Protocol (SAP), * the Session Initiation Protocol (SIP), * the Real Time Streaming Protocol (RTSP), RFC 2326. The latter three specifications are in fact alternative signaling standards that allow for the transmission of a session description to an interested party. SAP is used by multicast session managers to distribute a multicast session description to a large group of recipients, SIP is used to invite an individual user to take part in a point-to-point or unicast session, RTSP is used to interface a server that provides real time data. In all three cases, the session description is described according to SDP; when audio is transmitted, it is transmitted through the Real-time Transport Protocol, RTP. The distributed gateway systems and MGCP will enable PSTN telephony users to access sessions set up using SAP, SIP or RTSP. The Call Agent provides for signaling conversion, according to the following table:Arango, et al. Informational [Page 8]RFC 2705 Media Gateway Control Protocol (MGCP) October 1999 _____________________________________________________________________ | Functional| Phone | Terminating | IETF conforming systems| | Plane | switch | Entity | | |___________|____________|_________________|_________________________| | Signaling | Signaling | Call agent | Signaling exchanges | | Plane | exchanges | | with the call agent | | | through | | through SAP, SIP or | | | SS7/ISUP | | RTSP. | |___________|____________|_________________|_________________________| | | | | Negotiation of session | | | | | description parameters | | | | | through SDP (telephony | | | | | gateway terminated but | | | | | passed via the call | | | | | agent to and from the | | | | | IETF conforming system)| |___________|____________|_________________|_________________________| | | | Internal | | | | | synchronization| | | | | through MGCP | | |___________|____________|_________________|_________________________| | Bearer | Connection| Telephony | Transmission of VoIP | | Data | through | gateways | data using RTP, | | Transport | high speed| | directly between the | | Plane | trunk | | remote IP end system | | | groups | | and the gateway. | |___________|____________|_________________|_________________________| The SDP standard has a pivotal status in this architecture. We will see in the following description that we also use it to carry session descriptions in MGCP.1.3. Definitions Trunk: A communication channel between two switching systems. E.g., a DS0 on a T1 or E1 line.2. Media Gateway Control Interface The interface functions provide for connection control and endpoint control. Both use the same system model and the same naming conventions.Arango, et al. Informational [Page 9]RFC 2705 Media Gateway Control Protocol (MGCP) October 19992.1. Model and naming conventions The MGCP assumes a connection model where the basic constructs are endpoints and connections. Connections are grouped in calls. One or more connections can belong to one call. Connections and calls are set up at the initiative of one or several Call Agents.2.1.1. Types of endpoints In the introduction, we presented several classes of gateways. Such classifications, however, can be misleading. Manufacturers can arbitrarily decide to provide several types of services in a single packaging. A single product could well, for example, provide some trunk connections to telephony switches, some primary rate connections and some analog line interfaces, thus sharing the characteristics of what we described in the introduction as "trunking", "access" and "residential" gateways. MGCP does not make assumptions about such groupings. We simply assume that media gateways support collections of endpoints. The type of the endpoint determines its functionalities. Our analysis, so far, has led us to isolate the following basic endpoint types: * Digital channel (DS0), * Analog line, * Annoucement server access point, * Interactive Voice Response access point, * Conference bridge access point, * Packet relay, * Wiretap access point, * ATM "trunk side" interface. In this section, we will develop the expected behavior of such end points. This list is not limitative. There may be other types of endpoints defined in the future, for example test endpoint that could be used to check network quality, or frame-relay endpoints that could be used to managed audio channels multiplexed over a frame-relay virtual circuit.Arango, et al. Informational [Page 10]RFC 2705 Media Gateway Control Protocol (MGCP) October 19992.1.1.1. Digital channel (DS0) Digital channels provide an 8Khz*8bit service. Such channels are found in trunk and ISDN interfaces. They are typically part of digital multiplexes, such as T1, E1, T3 or E3 interfaces. Media gateways that support such channels are capable of translating the digital signals received on the channel, which may be encoded according to A or mu-law, using either the complete set of 8 bits or only 7 of these bits, into audio packets. When the media gateway also supports a NAS service, the gateway shall be capable of receiving either audio-encoded data (modem connection) or binary data (ISDN connection) and convert them into data packets. +------- +------------+| (channel) ===|DS0 endpoint| -------- Connections +------------+| +------- Media gateways should be able to establish several connections between the endpoint and the packet networks, or between the endpoint and other endpoints in the same gateway. The signals originating from these connections shall be mixed according to the connection "mode", as specified later in this document. The precise number of connections that an endpoint support is a characteristic of the gateway, and may in fact vary according with the allocation of resource within the gateway. In some cases, digital channels are used to carry signalling. This is the case for example of SS7 "F" links, or ISDN "D" channels. Media gateways that support these signalling functions shall be able to send and receive the signalling packets to and from a call agent, using the "back haul" procedures defined by the SIGTRAN working group of the IETF. Digital channels are sometimes used in conjunction with channel associated signalling, such as "MF R2". Media gateways that support these signalling functions shall be able to detect and produce the corresponding signals, such as for example "wink" or "A", according to the event signalling and reporting procedures defined in MGCP.2.1.1.2. Analog line Analog lines can be used either as a "client" interface, providing service to a classic telephone unit, or as a "service" interface, allowing the gateway to send and receive analog calls. When the media gateway also supports a NAS service, the gateway shall be capable of receiving audio-encoded data (modem connection) and convert them into data packets.Arango, et al. Informational [Page 11]RFC 2705 Media Gateway Control Protocol (MGCP) October 1999
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -