📄 rfc1433.txt
字号:
Network Working Group J. GarrettRequest for Comments: 1433 AT&T Bell Laboratories J. Hagan University of Pennsylvania J. Wong AT&T Bell Laboratories March 1993 Directed ARPStatus of this Memo This memo defines an Experimental Protocol for the Internet community. Discussion and suggestions for improvement are requested. Please refer to the current edition of the "IAB Official Protocol Standards" for the standardization state and status of this protocol. Distribution of this memo is unlimited.Abstract A router with an interface to two IP networks via the same link level interface could observe that the two IP networks share the same link level network, and could advertise that information to hosts (via ICMP Redirects) and routers (via dynamic routing protocols). However, a host or router on only one of the IP networks could not use that information to communicate directly with hosts and routers on the other IP network unless it could resolve IP addresses on the "foreign" IP network to their corresponding link level addresses. Directed ARP is a dynamic address resolution procedure that enables hosts and routers to resolve advertised potential next-hop IP addresses on foreign IP networks to their associated link level addresses.Acknowledgments The authors are indebted to Joel Halpern of Network Systems Corporation and David O'Leary who provided valuable comments and insight to the authors, as well as ongoing moral support as the presentation of this material evolved through many drafts. Members of the IPLPDN working group also provided valuable comments during presentations and through the IPLPDN mailing list. Chuck Hedrick of Rutgers University, Paul Tsuchiya of Bell Communications Research, and Doris Tillman of AT&T Bell Laboratories provided early insight as well as comments on early drafts.Garrett, Hagan & Wong [Page 1]RFC 1433 Directed ARP March 19931. Terminology A "link level network" is the upper layer of what is sometimes referred to (e.g., OSI parlance) as the "subnetwork", i.e., the layers below IP. The term "link level" is used to avoid potential confusion with the term "IP sub-network", and to identify addresses (i.e., "link level address") associated with the network used to transport IP datagrams. From the perspective of a host or router, an IP network is "foreign" if the host or router does not have an address on the IP network.2. Introduction Multiple IP networks may be administered on the same link level network (e.g., on a large public data network). A router with a single interface on two IP networks could use existing routing update procedures to advertise that the two IP networks shared the same link level network. Cost/performance benefits could be achieved if hosts and routers that were not on the same IP network could use that advertised information, and exchange packets directly, rather than through the dual addressed router. But a host or router can not send packets directly to an IP address without first resolving the IP address to its link level address. IP address resolution procedures are established independently for each IP network. For example, on an SMDS network [1], address resolution may be achieved using the Address Resolution Protocol (ARP) [2], with a separate SMDS ARP Request Address (e.g., an SMDS Multicast Group Address) associated with each IP network. A host or router that was not configured with the appropriate ARP Request Address would have no way to learn the ARP Request Address associated with an IP network, and would not send an ARP Request to the appropriate ARP Request Address. On an Ethernet network a host or router might guess that an IP address could be resolved by sending an ARP Request to the broadcast address. But if the IP network used a different address resolution procedure (e.g., administered address resolution tables), the ARP Request might go unanswered. Directed ARP is a procedure that enables a router advertising that an IP address is on a shared link level network to also aid in resolving the IP address to its associated link level address. By removing address resolution constraints, Directed ARP enables dynamic routing protocols such as BGP [3] and OSPF [4] to advertise and use routing information that leads to next-hop addresses on "foreign" IP networks. In addition, Directed ARP enables routers to advertise (via ICMP Redirects) next-hop addresses that are "foreign" to hosts, since the hosts can use Directed ARP to resolve the "foreign" next-Garrett, Hagan & Wong [Page 2]RFC 1433 Directed ARP March 1993 hop addresses.3. Directed ARP Directed ARP uses the normal ARP packet format, and is consistent with ARP procedures, as defined in [1] and [2], and with routers and hosts that implement those procedures.3.1 ARP Helper Address Hosts and routers maintain routing information, logically organized as a routing table. Each routing table entry associates one or more destination IP addresses with a next-hop IP address and a physical interface used to forward a packet to the next-hop IP address. If the destination IP address is local (i.e., can be reached without the aid of a router), the next-hop IP address is NULL (or a logical equivalent, such as the IP address of the associated physical interface). Otherwise, the next-hop IP address is the address of a next-hop router. A host or router that implements Directed ARP procedures associates an ARP Helper Address with each routing table entry. If the host or router has been configured to resolve the next-hop IP address to its associated link level address (or to resolve the destination IP address, if the next-hop IP address is NULL), the associated ARP Helper Address is NULL. Otherwise, the ARP Helper Address is the IP address of the router that provided the routing information indicating that the next-hop address was on the same link level network as the associated physical interface. Section 4 provides detailed examples of the determination of ARP Helper Addresses by dynamic routing procedures.3.2 Address Resolution Procedures To forward an IP packet, a host or router searches its routing table for an entry that is the best match based on the destination IP address and perhaps other factors (e.g., Type of Service). The selected routing table entry includes the IP address of a next-hop router (which may be NULL), the physical interface through which the IP packet should be forwarded, an ARP Helper Address (which may be NULL), and other information. The routing function passes the next- hop IP address, the physical interface, and the ARP Helper Address to the address resolution function. The address resolution function must then resolve the next-hop IP address (or destination IP address if the next-hop IP address is NULL) to its associated link level address. The IP packet, the link level address to which the packet should be forwarded, and the interface through which the packet should be forwarded are then passed to the link level driverGarrett, Hagan & Wong [Page 3]RFC 1433 Directed ARP March 1993 associated with the physical interface. The link level driver encapsulates the IP packet in one or more link level frames (i.e., may do fragmentation) addressed to the associated link level address, and forwards the frame(s) through the appropriate physical interface. The details of the functions performed are described via C pseudo- code below. The procedures are organized as two functions, Route() and Resolve(), corresponding to routing and address resolution. In addition, the following low level functions are also used: Get_Route(IP_Add,Other) returns a pointer to the routing table entry with the destination field that best matches IP_Add. If no matching entry is found, NULL is returned. Other information such as Type of Service may be considered in selecting the best route. Forward(Packet,Link_Level_Add,Phys_Int) fragments Packet (if needed), and encapsulates Packet in one or more Link Level Frames addressed to Link_Level_Add, and forwards the frame(s) through interface, Phys_Int. Look_Up_Add_Res_Table(IP_Add,Phys_Int) returns a pointer to the link level address associated with IP_Add in the address resolution table associated with interface, Phys_Int. If IP_Add is not found in the address resolution table, NULL is returned. Local_Add_Res(IP_Add,Phys_Int) returns a pointer to the Link Level address associated with IP_Add, using address resolution procedures associated with address, IP_Add, and interface, Phys_Int. If address resolution is unsuccessful, NULL is returned. Note that different address resolution procedures may be used for different IP networks. Receive_ARP_Response(IP_Add,Phys_Int) returns a pointer to an ARP Response received through interface, Phys_Int, that resolves IP_Add. If no ARP response is received, NULL is returned. Dest_IP_Add(IP_Packet) returns the IP destination address from IP_Packet. Next_Hop(Entry) returns the IP address in the next-hop field of (routing table) Entry. Interface(Entry) returns the physical interface field of (routing table) Entry. ARP_Helper_Add(Entry) returns the IP address in the ARP Helper Address field of (routing table) Entry.Garrett, Hagan & Wong [Page 4]RFC 1433 Directed ARP March 1993 ARP_Request(IP_Add) returns an ARP Request packet with IP_Add as the Target IP address. Source_Link_Level(ARP_Response) returns the link level address of the sender of ARP_Response. ROUTE(IP_Packet) { Entry = Get_Route(Dest_IP_Add(IP_Packet),Other(IP_Packet)); If (Entry == NULL) /* No matching entry in routing table */ Return; /* Discard IP_Packet */ else { /* Resolve next-hop IP address to link level address */ If (Next_Hop(Entry) != NULL) /* Route packet via next-hop router */ Next_IP = Next_Hop(Entry); else /* Destination is local */ Next_IP = Dest_IP_Add(IP_Packet); L_L_Add = Resolve(Next_IP,Interface(Entry),ARP_Helper_Add(Entry)); If (L_L_Add != NULL) Forward(IP_Packet,L_L_Add,Interface(Entry)); else /* Couldn't resolve next-hop IP address */ Return; /* Discard IP_Packet */ Return; } } Figure 1: C Pseudo-Code for the Routing function.Garrett, Hagan & Wong [Page 5]RFC 1433 Directed ARP March 1993 Resolve(IP_Add,Interface,ARP_Help_Add) { If ((L_L_Add = Look_Up_Add_Res_Table(IP_Add,Interface)) != NULL) { /* Found it in Address Resolution Table */ Return L_L_Add; } else { If (ARP_Help_Add == NULL) { /* Do local Address Resolution Procedure */ Return Local_Add_Res(IP_Add,Interface); } else /* ARP_Help_Add != NULL */ { L_L_ARP_Help_Add = Look_Up_Add_Res_Table(ARP_Help_Add,Interface); If (L_L_ARP_Help_Add == NULL) /* Not in Address Resolution Table */ L_L_ARP_Help_Add = Local_Add_Res(ARP_Help_Add,Interface); If (L_L_ARP_Help_Add == NULL) /* Can't Resolve ARP Helper Add */ Return NULL; /* Address Resolution Failed */ else { /* ARP for IP_Add */ Forward(ARP_Request(IP_Add),L_L_ARP_Help_Add,Interface); ARP_Resp = Receive_ARP_Response(IP_Add,Interface); If (ARP_Resp == NULL) /* No ARP Response (after persistence) */ Return NULL; /* Address Resolution Failed */ else Return Source_Link_Level(ARP_Resp); } } } } } Figure 2: C Pseudo-Code for Address Resolution function.3.3 Forwarding ARP Requests A host that implements Directed ARP procedures uses normal procedures to process received ARP Requests. That is, if the Target IP address is the host's address, the host uses normal procedures to respond to the ARP Request. If the Target IP address is not the host's address, the host silently discards the ARP Request. If the Target IP address of an ARP Request received by a router is the router's address, the router uses normal procedures to respond to
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -