📄 rfc1649.txt
字号:
RFC 1649 X.400 Management in GO-MHS July 19943.1.7. Domain Defined Attributes (DDAs) The GO-MHS Community shall allow the use of domain defined attributes. Note: Support for DDAs is mandatory in the functional profiles, and all software must upgrade to support DDAs. The following DDAs shall be supported by a GO-MD: "RFC-822" - defined in reference [3]. The following DDAs should be supported by a GO-MD: "COMMON" - defined in reference [2].3.2. X.400 88 -> 84 Downgrading The requirements in reference [2] should be implemented in GO-MDs3.3. X.400 / RFC-822 address mapping All GO-MHS Community end-users shall be reachable from all end-users in the RFC-822 mail service in the Internet (SMTP), and vice versa. The address mapping issue is split into two parts: 1) Specification of RFC-822 addresses seen from the X.400 world. 2) Specification of X.400 addresses seen from the RFC-822 world. The mapping of X.400 and RFC-822 addresses shall be performed according to reference [3].3.3.1. Specification of RFC-822 Addresses seen from the X.400 World Two scenarios are described: A. The RFC-822 end-user belongs to an organization with no defined X.400 standard attribute address space. B. The RFC-822 end-user belongs to an organization with a defined X.400 standard attribute address space. Organizations belong to scenario B if their X.400 addresses are registered according to the requirements in section 3.1.3.3.1.1. An Organization with a defined X.400 Address Space An RFC-822 address for an RFC-822 mail user in such an organization shall be in the same address space as a normal X.400 address for X.400 users in the same organization. RFC-822 addresses and X.400 addresses are thus sharing the same address space. Example:Hagens & Hansen [Page 8]RFC 1649 X.400 Management in GO-MHS July 1994 University of Wisconsin-Madison is registered under C=US; ADMD=Internet; PRMD=XNREN; with O=UW-Madison and they are using OU=cs to address end-users in the CS-department. The RFC-822 address for RFC-822 mail users in the same department is: user@cs.wisc.edu. An X.400 user in the GO-MHS Community will address the RFC-822 mail user at the CS-department with the X.400 address: C=US; ADMD=Internet; PRMD=xnren; O=UW-Madison; OU=cs; S=user; This is the same address space as is used for X.400 end-users in the same department.3.3.1.2. An Organization with no defined X.400 Address Space RFC-822 addresses shall be expressed using X.400 domain defined attributes. The mechanism used to define the RFC-822 recipient will vary on a per-country basis. For example, in the U.S., a special PRMD named "Internet" is defined to facilitate the specification of RFC-822 addresses. An X.400 user can address an RFC-822 recipient in the U.S. by constructing an X.400 address such as: C=us; ADMD=Internet; PRMD=Internet; DD.RFC-822=user(a)some.place.edu; The first part of this address: C=us; ADMD=Internet; PRMD=Internet; denotes the U.S. portion of the Internet community and not a specific "gateway". The 2nd part: DD.RFC-822=user(a)some.place.edu is the RFC-822 address of the RFC-822 mail user after substitution of non-printable characters according to reference [3]. The RFC-822 address is placed in an X.400 Domain Defined Attribute of type RFC- 822 (DD.RFC-822). Each country is free to choose its own method of defining the RFC-822 community. For example in Italy, an X.400 user would refer to an RFC-822 user as: C=IT; ADMD=MASTER400; DD.RFC-822=user(a)some.place.it In the UK, an X.400 user would refer to an RFC-822 user as:Hagens & Hansen [Page 9]RFC 1649 X.400 Management in GO-MHS July 1994 C=GB; ADMD= ; PRMD=UK.AC; O=MHS-relay; DD.RFC-822=user(a)some.place.uk3.3.2. Specification of X.400 Addresses seen from the RFC-822 World If an X.400 organization has a defined RFC-822 address space, RFC-822 users will be able to address X.400 recipients in RFC-822/Internet terms. This means that the address of the X.400 user, seen from an RFC-822 user, will generally be of the form: Firstname.Lastname@some.place.edu where the some.place.edu is a registered Internet domain. This implies the necessity of maintaining and distributing address mapping tables to all participating RFC-1327 gateways. The mapping tables shall be globally consistent. Effective mapping table coordination procedures are needed. If an organization does not have a defined RFC-822 address space, an escape mapping (defined in reference [3]) shall be used. In this case, the address of the X.400 user, seen from an RFC-822 user, will be of the form: "/G=Firstname/S=Lastname/O=org name/PRMD=foo/ADMD=bar/C=us/"@ some.gateway.edu Note that reference [7] specifies that quoted left-hand side addresses must be supported and that these addresses may be greater than 80 characters long. This escape mapping shall also be used for X.400 addresses which do not map cleanly to RFC-822 addresses. It is recommended that an organization with no defined RFC-822 address space, should register RFC-822 domains at the appropriate registration entity for such registrations. This will minimize the number of addresses which must use the escape mapping. If the escape mapping is not used, RFC-822 users will not see the difference between an Internet RFC-822 address and an address in the GO-MHS Community. For example: The X.400 address: C=us; ADMD=ATTMail; PRMD=CDC; O=CPG; S=Lastname; G=Firstname; will from an RFC-822 user look like:Hagens & Hansen [Page 10]RFC 1649 X.400 Management in GO-MHS July 1994 Firstname.Lastname@cpg.cdc.com3.4. Routing Policy To facilitate routing in the GO-MHS Community before an X.500 infrastructure is deployed, the following two documents, a RELAY-MTA document and a Domain document, are defined. These documents are formally defined in reference [1]. The use of these documents is necessary to solve the routing crisis that is present today. However, this is a temporary solution that will eventually be replaced by the use of X.500. The RELAY-MTA document will define the names of RELAY-MTAs and their associated connection data including selector values, NSAP addresses, supported protocol stacks, and supported X.400 protocol version(s). Each entry in the Domain document consists of a sub-tree hierarchy of an X.400 address, followed by a list of MTAs which are willing to accept mail for the address or provide a relay service for it. Each MTA name will be associated with a priority value. Collectively, the list of MTA names in the Domain document make the given address reachable from all protocol stacks. In addition, the list of MTAs may provide redundant paths to the address, so in this case, the priority value indicates the preferred path, or the preferred order in which alternative routes should be tried. The RELAY-MTA and Domain documents are coordinated by the group specified in the Community document. The procedures for document information gathering and distribution, are for further study.3.5. Minimum Statistics/Accounting The following are not required for all MTAs. The information is provided as guidelines for MTA managers. This is helpful for observing service use and evaluating service performance. This section defines the data which should be kept by each MTA. There are no constraints on the encoding used to store the data (i.e., format). For each message/report passing the MTA, the following information should be collected.Hagens & Hansen [Page 11]RFC 1649 X.400 Management in GO-MHS July 1994 The following fields should be collected. Date Time Priority Local MTA Name Size The following fields are conditionally collected. From MTA Name (fm) To MTA Name (tm) Delta Time (dt) Message-id (id) At least one of 'fm' and 'tm' should be present. If one of 'fm' and 'tm' is not present, 'id' should be present. If both 'fm' and 'tm' are present, then 'dt' indicates the number of minutes that the message was delayed in the MTA. If 'id' cannot be mapped locally because of log file formats, 'id' is not present and every message creates two lines: one with 'fm' empty and one with 'tm' empty. In this case, 'date' and 'time' in the first line represent the date and time the message entered the MTA. In the second line, they represent the date and time the message left the MTA. The following fields are optionally collected. From Domain (fd) To Domain (td) For route tracing, 'fd' and 'td' are useful. They represent X.400 OU's, O, PRMD, ADMD and C and may be supplied up to any level of detail.4. Community Document For the GO-MHS community there will exist one single COMMUNITY document containing basic information as defined in reference [1]. First the contact information for the central coordination point can be found together with the addresses for the file server where all the documents are stored. It also lists network names and stacks to be used in the RELAY-MTA and DOMAIN documents. The GO-MHS community must agree on its own set of mandatory and optional networks and stacks.Hagens & Hansen [Page 12]RFC 1649 X.400 Management in GO-MHS July 19945. Security Considerations Security issues are not discussed in this memo.6. Authors' Addresses Robert Hagens Advanced Network & Services, Inc. 1875 Campus Commons Drive Suite 220 Reston, VA 22091 U.S.A. Phone: +1 703 758 7700 Fax: +1 703 758 7717 EMail: hagens@ans.net DDA.RFC-822=hagens(a)ans.net; P=INTERNET; C=US Alf Hansen UNINETT Elgesetergt. 10 Postbox 6883, Elgeseter N-7002 Trondheim Norway Phone: +47 7359 2982 Fax: +47 7359 6450 EMail: Alf.Hansen@uninett.no G=Alf; S=Hansen; O=uninett; P=uninett; C=noHagens & Hansen [Page 13]RFC 1649 X.400 Management in GO-MHS July 1994References [1] Eppenberger, U., Routing Coordination for X.400 MHS-Services Within a Multi Protocol / Multi Network Environment, RFC 1465, SWITCH, May 1993. [2] Hardcastle-Kille, S., "X.400 1988 to 1984 downgrading, RFC 1328, University College London, May 1992. [3] Hardcastle-Kille, S., "Mapping between X.400(1988) / ISO 10021 and RFC 822, RFC 1327, May 1992. [4] Cargille, A., "Postmaster Convention for X.400 Operations", RFC 1648, University of Wisconsin, July 1994. [5] International Telecommunications Union, CCITT. Data Communications Networks, Volume VIII, Message Handling Systems, ITU: Geneva 1985. [6] Harrenstien, K., Stahl, M., and E. Feinler, "DOD Internet Host Table Specification", RFC 952, SRI, October 1985. [7] Braden, R., "Requirements for Internet Hosts -- Application and Support", STD 3, RFC 1123, USC/Information Sciences Institute, October 1989.Hagens & Hansen [Page 14]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -