📄 rfc1944.txt
字号:
on one port and 198.19.1.1 on the other port. Some of the tests described in the methodology memo make use of an SNMP management connection to the DUT. The management access address for the DUT is assumed to be the first of the "input" ports (198.18.1.1). C.2.2.2 Frame addresses Some of the described tests assume adjacent network routing (the reboot time test for example). The IP address used in the test frame is that of node 2 on the appropriate Class C network. (198.19.1.2 for example) If the test involves non-adjacent network routing the phantom routers are located at node 10 of each of the appropriate Class C networks. A series of Class C network addresses from 198.18.65.0 to 198.18.254.0 has been assigned for use as the networks accessible through the phantom routers on the "input" side of DUT. The series of Class C networks from 198.19.65.0 to 198.19.254.0 have been assigned to be used as the networks visible through the phantom routers on the "output" side of the DUT. C.2.3 Routing Update Frequency The update interval for each routing protocol is may have to be determined by the specifications of the individual protocol. For IP RIP, Cisco IGRP and for OSPF a routing update frame or frames should precede each stream of test frames by 5 seconds. This frequency is sufficient for trial durations of up to 60 seconds. Routing updates must be mixed with the stream of test frames if longer trial periods are selected. The frequency of updates should be taken from the following table.Bradner & McQuaid Informational [Page 24]RFC 1944 Benchmarking Methodology May 1996 IP-RIP 30 sec IGRP 90 sec OSPF 90 sec C.2.4 Frame Formats - detailed discussion C.2.4.1 Learning Frame In most protocols a procedure is used to determine the mapping between the protocol node address and the MAC address. The Address Resolution Protocol (ARP) is used to perform this function in TCP/IP. No such procedure is required in XNS or IPX because the MAC address is used as the protocol node address. In the ideal case the tester would be able to respond to ARP requests from the DUT. In cases where this is not possible an ARP request should be sent to the router's "output" port. This request should be seen as coming from the immediate destination of the test frame stream. (i.e. the phantom router (Figure 2) or the end node if adjacent network routing is being used.) It is assumed that the router will cache the MAC address of the requesting device. The ARP request should be sent 5 seconds before the test frame stream starts in each trial. Trial lengths of longer than 50 seconds may require that the router be configured for an extended ARP timeout. +--------+ +------------+ | | | phantom |------ P LAN A IN A------| DUT |------------| |------ P LAN B | | OUT A | router |------ P LAN C +--------+ +------------+ Figure 2 In the case where full routing is being used C.2.4.2 Routing Update Frame If the test does not involve adjacent net routing the tester must supply proper routing information using a routing update. A single routing update is used before each trial on each "destination" port (see section C.24). This update includes the network addresses that are reachable through a phantom router on the network attached to the port. For a full mesh test, one destination network address is present in the routing update for each of the "input" ports. The test stream on eachBradner & McQuaid Informational [Page 25]RFC 1944 Benchmarking Methodology May 1996 "input" port consists of a repeating sequence of frames, one to each of the "output" ports. C.2.4.3 Management Query Frame The management overhead test uses SNMP to query a set of variables that should be present in all DUTs that support SNMP. The variables for a single interface only are read by an NMS at the appropriate intervals. The list of variables to retrieve follow: sysUpTime ifInOctets ifOutOctets ifInUcastPkts ifOutUcastPkts C.2.4.4 Test Frames The test frame is an UDP Echo Request with enough data to fill out the required frame size. The data should not be all bits off or all bits on since these patters can cause a "bit stuffing" process to be used to maintain clock synchronization on WAN links. This process will result in a longer frame than was intended. C.2.4.5 Frame Formats - TCP/IP on Ethernet Each of the frames below are described for the 1st pair of DUT ports, i.e. "input" port #1 and "output" port #1. Addresses must be changed if the frame is to be used for other ports. C.2.6.1 Learning Frame ARP Request on Ethernet -- DATAGRAM HEADER offset data (hex) description 00 FF FF FF FF FF FF dest MAC address send to broadcast address 06 xx xx xx xx xx xx set to source MAC address 12 08 06 ARP type 14 00 01 hardware type Ethernet = 1 16 08 00 protocol type IP = 800 18 06 hardware address length 48 bits on Ethernet 19 04 protocol address length 4 octets for IP 20 00 01 opcode request = 1 22 xx xx xx xx xx xx source MAC address 28 xx xx xx xx source IP addressBradner & McQuaid Informational [Page 26]RFC 1944 Benchmarking Methodology May 1996 32 FF FF FF FF FF FF requesting DUT's MAC address 38 xx xx xx xx DUT's IP address C.2.6.2 Routing Update Frame -- DATAGRAM HEADER offset data (hex) description 00 FF FF FF FF FF FF dest MAC address is broadcast 06 xx xx xx xx xx xx source hardware address 12 08 00 type -- IP HEADER 14 45 IP version - 4, header length (4 byte units) - 5 15 00 service field 16 00 EE total length 18 00 00 ID 20 40 00 flags (3 bits) 4 (do not fragment), fragment offset-0 22 0A TTL 23 11 protocol - 17 (UDP) 24 C4 8D header checksum 26 xx xx xx xx source IP address 30 xx xx xx destination IP address 33 FF host part = FF for broadcast -- UDP HEADER 34 02 08 source port 208 = RIP 36 02 08 destination port 208 = RIP 38 00 DA UDP message length 40 00 00 UDP checksum -- RIP packet 42 02 command = response 43 01 version = 1 44 00 00 0 -- net 1 46 00 02 family = IP 48 00 00 0 50 xx xx xx net 1 IP address 53 00 net not node 54 00 00 00 00 0 58 00 00 00 00 0 62 00 00 00 07 metric 7 -- net 2Bradner & McQuaid Informational [Page 27]RFC 1944 Benchmarking Methodology May 1996 66 00 02 family = IP 68 00 00 0 70 xx xx xx net 2 IP address 73 00 net not node 74 00 00 00 00 0 78 00 00 00 00 0 82 00 00 00 07 metric 7 -- net 3 86 00 02 family = IP 88 00 00 0 90 xx xx xx net 3 IP address 93 00 net not node 94 00 00 00 00 0 98 00 00 00 00 0 102 00 00 00 07 metric 7 -- net 4 106 00 02 family = IP 108 00 00 0 110 xx xx xx net 4 IP address 113 00 net not node 114 00 00 00 00 0 118 00 00 00 00 0 122 00 00 00 07 metric 7 -- net 5 126 00 02 family = IP 128 00 00 0 130 00 net 5 IP address 133 00 net not node 134 00 00 00 00 0 138 00 00 00 00 0 142 00 00 00 07 metric 7 -- net 6 146 00 02 family = IP 148 00 00 0 150 xx xx xx net 6 IP address 153 00 net not node 154 00 00 00 00 0 158 00 00 00 00 0 162 00 00 00 07 metric 7 C.2.4.6 Management Query Frame To be defined.Bradner & McQuaid Informational [Page 28]RFC 1944 Benchmarking Methodology May 1996 C.2.6.4 Test Frames UDP echo request on Ethernet -- DATAGRAM HEADER offset data (hex) description 00 xx xx xx xx xx xx set to dest MAC address 06 xx xx xx xx xx xx set to source MAC address 12 08 00 type -- IP HEADER 14 45 IP version - 4 header length 5 4 byte units 15 00 TOS 16 00 2E total length* 18 00 00 ID 20 00 00 flags (3 bits) - 0 fragment offset-0 22 0A TTL 23 11 protocol - 17 (UDP) 24 C4 8D header checksum* 26 xx xx xx xx set to source IP address** 30 xx xx xx xx set to destination IP address** -- UDP HEADER 34 C0 20 source port 36 00 07 destination port 07 = Echo 38 00 1A UDP message length* 40 00 00 UDP checksum -- UDP DATA 42 00 01 02 03 04 05 06 07 some data*** 50 08 09 0A 0B 0C 0D 0E 0F * - change for different length frames ** - change for different logical streams *** - fill remainder of frame with incrementing octets, repeated if required by frame lengthBradner & McQuaid Informational [Page 29]RFC 1944 Benchmarking Methodology May 1996 Values to be used in Total Length and UDP message length fields: frame size total
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -