📄 rfc1944.txt
字号:
fragmented IP, X.25 frames out.) By extending the single DUT test model, reasonable benchmarks regarding multiple DUTs or heterogeneous environments may be collected. In this extension, the single DUT is replaced by a system of interconnected network DUTs. This test methodology would support the benchmarking of a variety of device/media/service/protocol combinations. For example, a configuration for a LAN-to-WAN-to-LAN test might be: (1) 802.3-> DUT 1 -> X.25 @ 64kbps -> DUT 2 -> 802.3 Or a mixed LAN configuration might be: (2) 802.3 -> DUT 1 -> FDDI -> DUT 2 -> FDDI -> DUT 3 -> 802.3Bradner & McQuaid Informational [Page 12]RFC 1944 Benchmarking Methodology May 1996 In both examples 1 and 2, end-to-end benchmarks of each system could be empirically ascertained. Other behavior may be characterized through the use of intermediate devices. In example 2, the configuration may be used to give an indication of the FDDI to FDDI capability exhibited by DUT 2. Because multiple DUTs are treated as a single system, there are limitations to this methodology. For instance, this methodology may yield an aggregate benchmark for a tested system. That benchmark alone, however, may not necessarily reflect asymmetries in behavior between the DUTs, latencies introduce by other apparatus (e.g., CSUs/DSUs, switches), etc. Further, care must be used when comparing benchmarks of different systems by ensuring that the DUTs' features/configuration of the tested systems have the appropriate common denominators to allow comparison.20. Maximum frame rate The maximum frame rates that should be used when testing LAN connections SHOULD be the listed theoretical maximum rate for the frame size on the media. The maximum frame rate that should be used when testing WAN connections SHOULD be greater than the listed theoretical maximum rate for the frame size on that speed connection. The higher rate for WAN tests is to compensate for the fact that some vendors employ various forms of header compression. A list of maximum frame rates for LAN connections is included in Appendix B.21. Bursty traffic It is convenient to measure the DUT performance under steady state load but this is an unrealistic way to gauge the functioning of a DUT since actual network traffic normally consists of bursts of frames. Some of the tests described below SHOULD be performed with both steady state traffic and with traffic consisting of repeated bursts of frames. The frames within a burst are transmitted with the minimum legitimate inter-frame gap. The objective of the test is to determine the minimum interval between bursts which the DUT can process with no frame loss. During each test the number of frames in each burst is held constant and the inter-burst interval varied. Tests SHOULD be run with burst sizes of 16, 64, 256 and 1024 frames.Bradner & McQuaid Informational [Page 13]RFC 1944 Benchmarking Methodology May 199622. Frames per token Although it is possible to configure some token ring and FDDI interfaces to transmit more than one frame each time that the token is received, most of the network devices currently available transmit only one frame per token. These tests SHOULD first be performed while transmitting only one frame per token. Some current high-performance workstation servers do transmit more than one frame per token on FDDI to maximize throughput. Since this may be a common feature in future workstations and servers, interconnect devices with FDDI interfaces SHOULD be tested with 1, 4, 8, and 16 frames per token. The reported frame rate SHOULD be the average rate of frame transmission over the total trial period.23. Trial description A particular test consists of multiple trials. Each trial returns one piece of information, for example the loss rate at a particular input frame rate. Each trial consists of a number of phases: a) If the DUT is a router, send the routing update to the "input" port and pause two seconds to be sure that the routing has settled. b) Send the "learning frames" to the "output" port and wait 2 seconds to be sure that the learning has settled. Bridge learning frames are frames with source addresses that are the same as the destination addresses used by the test frames. Learning frames for other protocols are used to prime the address resolution tables in the DUT. The formats of the learning frame that should be used are shown in the Test Frame Formats document. c) Run the test trial. d) Wait for two seconds for any residual frames to be received. e) Wait for at least five seconds for the DUT to restabilize.24. Trial duration The aim of these tests is to determine the rate continuously supportable by the DUT. The actual duration of the test trials must be a compromise between this aim and the duration of the benchmarking test suite. The duration of the test portion of each trial SHOULD be at least 60 seconds. The tests that involve some form of "binary search", for example the throughput test, to determine the exact result MAY use a shorter trial duration to minimize the length of the search procedure, but the final determination SHOULD be made withBradner & McQuaid Informational [Page 14]RFC 1944 Benchmarking Methodology May 1996 full length trials.25. Address resolution The DUT SHOULD be able to respond to address resolution requests sent by the DUT wherever the protocol requires such a process.26. Benchmarking tests: Note: The notation "type of data stream" refers to the above modifications to a frame stream with a constant inter-frame gap, for example, the addition of traffic filters to the configuration of the DUT. 26.1 Throughput Objective: To determine the DUT throughput as defined in RFC 1242. Procedure: Send a specific number of frames at a specific rate through the DUT and then count the frames that are transmitted by the DUT. If the count of offered frames is equal to the count of received frames, the rate of the offered stream is raised and the test rerun. If fewer frames are received than were transmitted, the rate of the offered stream is reduced and the test is rerun. The throughput is the fastest rate at which the count of test frames transmitted by the DUT is equal to the number of test frames sent to it by the test equipment. Reporting format: The results of the throughput test SHOULD be reported in the form of a graph. If it is, the x coordinate SHOULD be the frame size, the y coordinate SHOULD be the frame rate. There SHOULD be at least two lines on the graph. There SHOULD be one line showing the theoretical frame rate for the media at the various frame sizes. The second line SHOULD be the plot of the test results. Additional lines MAY be used on the graph to report the results for each type of data stream tested. Text accompanying the graph SHOULD indicate the protocol, data stream format, and type of media used in the tests. We assume that if a single value is desired for advertising purposes the vendor will select the rate for the minimum frame size for the media. If this is done then the figure MUST be expressed in frames per second. The rate MAY also be expressed in bits (or bytes) per second if the vendor so desires. TheBradner & McQuaid Informational [Page 15]RFC 1944 Benchmarking Methodology May 1996 statement of performance MUST include a/ the measured maximum frame rate, b/ the size of the frame used, c/ the theoretical limit of the media for that frame size, and d/ the type of protocol used in the test. Even if a single value is used as part of the advertising copy, the full table of results SHOULD be included in the product data sheet. 26.2 Latency Objective: To determine the latency as defined in RFC 1242. Procedure: First determine the throughput for DUT at each of the listed frame sizes. Send a stream of frames at a particular frame size through the DUT at the determined throughput rate to a specific destination. The stream SHOULD be at least 120 seconds in duration. An identifying tag SHOULD be included in one frame after 60 seconds with the type of tag being implementation dependent. The time at which this frame is fully transmitted is recorded (timestamp A). The receiver logic in the test equipment MUST recognize the tag information in the frame stream and record the time at which the tagged frame was received (timestamp B). The latency is timestamp B minus timestamp A as per the relevant definition frm RFC 1242, namely latency as defined for store and forward devices or latency as defined for bit forwarding devices. The test MUST be repeated at least 20 times with the reported value being the average of the recorded values. This test SHOULD be performed with the test frame addressed to the same destination as the rest of the data stream and also with each of the test frames addressed to a new destination network. Reporting format: The report MUST state which definition of latency (from RFC 1242) was used for this test. The latency results SHOULD be reported in the format of a table with a row for each of the tested frame sizes. There SHOULD be columns for the frame size, the rate at which the latency test was run for that frame size, for the media types tested, and for the resultant latency values for each type of data stream tested.Bradner & McQuaid Informational [Page 16]RFC 1944 Benchmarking Methodology May 1996 26.3 Frame loss rate Objective: To determine the frame loss rate, as defined in RFC 1242, of a DUT throughout the entire range of input data rates and frame sizes. Procedure: Send a specific number of frames at a specific rate through the DUT to be tested and count the frames that are transmitted by the DUT. The frame loss rate at each point is calculated using the following equation: ( ( input_count - output_count ) * 100 ) / input_count The first trial SHOULD be run for the frame rate that corresponds to 100% of the maximum rate for the frame size on the input media. Repeat the procedure for the rate that corresponds to 90% of the maximum rate used and then for 80% of this rate. This sequence SHOULD be continued (at reducing 10% intervals) until there are two successive trials in which no frames are lost. The maximum granularity of the trials MUST be 10% of the maximum rate, a finer granularity is encouraged. Reporting format: The results of the frame loss rate test SHOULD be plotted as a graph. If this is done then the X axis MUST be the input frame rate as a percent of the theoretical rate for the media at the specific frame size. The Y axis MUST be the percent loss at the particular input rate. The left end of the X axis and the bottom of the Y axis MUST be 0 percent; the right end of the X axis and the top of the Y axis MUST be 100 percent. Multiple lines on the graph MAY used to report the frame loss rate for different frame sizes, protocols, and types of data streams. Note: See section 18 for the maximum frame rates that SHOULD be used. 26.4 Back-to-back frames Objective: To characterize the ability of a DUT to process back-to-back frames as defined in RFC 1242. Procedure: Send a burst of frames with minimum inter-frame gaps to the DUT and count the number of frames forwarded by the DUT. If the count of transmitted frames is equal to the number of frames forwarded the length of the burst is increased and the test is rerun. IfBradner & McQuaid Informational [Page 17]RFC 1944 Benchmarking Methodology May 1996 the number of forwarded frames is less than the number transmitted, the length of the burst is reduced and the test is rerun. The back-to-back value is the number of frames in the longest burst that the DUT will handle without the loss of any frames. The trial length MUST be at least 2 seconds and SHOULD be repeated at least 50 times with the average of the recorded values being reported. Reporting format: The back-to-back results SHOULD be reported in the format of a table with a row for each of the tested frame sizes. There SHOULD be columns for the frame size and for the resultant average frame count for each type of data stream tested. The standard deviation for each measurement MAY also be reported. 26.5 System recovery Objective: To characterize the speed at which a DUT recovers from an overload condition.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -