📄 rfc1802.txt
字号:
Network Working Group H. AlvestrandRequest for Comments: 1802 UNINETTCategory: Informational K. Jordan Control Data Systems S. Langlois Electricite de France J. Romaguera NetConsult June 1995 Introducing Project Long Bud: Internet Pilot Project for the Deployment of X.500 Directory Information in Support of X.400 RoutingStatus of this Memo This memo provides information for the Internet community. This memo does not specify an Internet standard of any kind. Distribution of this memo is unlimited.Abstract The Internet X.400 community (i.e., GO-MHS) currently lacks a distributed mechanism providing dynamic updating and management of message routing information. The IETF MHS-DS Working Group has specified an approach for X.400 Message Handling Systems to perform message routing using OSI Directory Services. The MHS-DS approach has been successfully tested in a number of local environments. This memo describes a proposed Internet Pilot Project that seeks to prove the MHS-DS approach on a larger scale. The results of this pilot will then be used to draw up recommendations for a global deployment.1. Background The 1988 edition of X.400 introduces, among other extensions or revisions, the concept of O/R Names which assumes the existence of a widely available Directory Service. This Directory Service is needed to support several MHS operations (support for names to identify senders and receivers of messages in a user-friendly fashion, support for distribution lists, authentication of MHS components, description of MHS components capabilities...). The prime advantage of Directory Names, as perceived by many users, was to release users from the remembering of complex O/R Addresses for their correspondents.Alvestrand, et al Informational [Page 1]RFC 1802 Introducing Project Long Bud June 1995 In the MHS infrastructure, as compared to other protocols, a name by itself does not contain enough information to allow the Message Transfer Agents (MTAs) to route a message to the User Agent (UA) servicing this name. The routing process is based on information provided by different MHS Management Domains, whether they are public or private. An MHS community combines several administrative MHS domains among which agreements for cooperative routing exist: the GO-MHS community is the set of MTA's taking care of X.400 mail operations on the Internet [RFC 1649]. In the absence of a distributed Directory Service, an interim technique has been developed within the GO-MHS community to collect and advertise routing information. This resulted in an experimental IETF protocol [RFC 1465].2. Rationale A number of routing problems are preventing the present Internet X.400 service from expanding its number of participating message transfer agents to a global scale. The two most critical problems are: * The present mechanism of centrally maintained and advertized MTA routing tables has been optimized as far as possible. Increasing the number of directly connected MTAs increases also the workload on the MHS managers. The current solution does not scale. Routing must be a fully dynamic and distributed process. * Manual propagation and installation of routing tables do not guarantee consistency of routing information (even in a loose fashion) when it is accessed by different MTAs scattered across the globe. It is commonly accepted that a distributed mechanism providing for dynamic updating and management of X.400 routing information is highly desirable. The focus of the project is to establish X.500- based support of X.400 routing, at a very large scale.3. Benefits Using the Directory as a dynamic means of information storage and advertisement will guarantee participants in Project Long Bud that their updated data are globally available to the community. As a direct consequence of the above, a participating MHS manager will be released from configuring connections to the other participants.Alvestrand, et al Informational [Page 2]RFC 1802 Introducing Project Long Bud June 1995 Directory-capable MTAs will be able to discover more optimal and more direct routes to X.400 destinations than are practical today. This will enable faster delivery of messages. The infrastructure reliability will be improved: the information stored in the Directory will allow automatic use of backup connections in case of remote MTA or network problems. X.400 mail managers in the GO-MHS Community should then be released from the need to know the complexity of the whole mail routing infrastructure. Providing a dynamic routing infrastructure will eliminate inconsistencies introduced by unsynchronized static tables and improve quality of service. Furthermore, besides the robustness and the optimization of the new routing infrastructure, the Long Bud approach should bring to the participating organizations better control over how they establish and maintain their interconnection with the GO-MHS community. Participants will share in building an X.400 network which can expand to a very large scale. They will develop experience using a global messaging architecture which scales well and requires minimal administrative overhead. They will be able to discuss experience with the MHS-DS experts and architects in the ongoing standards development cycle.4. Definition of project LONG BUD The Long Bud pilot wishes to demonstrate that the X.500 Directory is able to provide a global-scale service to messaging applications. Although MHS-DS provides ways to use private routing trees, Long Bud will focus on the Open Community Routing Tree as used by the GO-MHS community.4.1 Project Goals Project Long Bud has the following goals: * Gather pilot experience of the defined framework for X.500 support of MTA routing, as defined by the IETF MHS-DS Working Group [Kille 94]. * Actively investigate migration of the existing operational X.400 service from a routing method based upon distribution of centrally maintained static tables, as specified in [RFC 1465], to a method based instead upon X.500:Alvestrand, et al Informational [Page 3]RFC 1802 Introducing Project Long Bud June 1995 -- Deploy X.400 MTAs which are directly capable of reading routing information from the X.500 Directory, in compliance with the specifications of the MHS-DS Working Group. This type of MTA is called a directory-capable MTA. -- Deploy tools which read routing information from the X.500 Directory and use it to generate static routing tables for MTAs which are not directory-capable. * specify a set of minimal operational requirements needed before X.500-based routing of X.400 messages can be widely deployed.4.2 Phasing The first phase of Project Long Bud consists in deploying a small number of directory-capable MTAs operated by members of the MHS-DS Working Group and GO-MHS community. These MTAs must be capable of using information in the X.500 directory to route messages to all other members of the project as well as to the existing GO-MHS community. As of this writing, an initial set of MTAs is already operational. At the end of this phase, the following goals should be achieved: * The X.500 DIT must be populated with enough routing information to allow the participating MTAs to route reliably messages to each other and to the existing GO-MHS community. * The X.500 DSAs holding the routing information must operate at a quality of service that is acceptable for an operational X.400 service. As a prerequisite, a sufficient number of MTA managers must be willing to participate in Project Long Bud for the first set of results to be significant. Support for a protocol stack conforming to [RFC 1006] is mandatory. All MTAs participating in the Long Bud pilot need to register in the Open Tree and must be prepared to accept connections from anyone. Note that in the first phase, default routes will be established in the DIT such that messages addressed to destinations outside of the Long Bud community will be routed to designated MTAs in the GO-MHS community. This will allow for full connectivity between the Long Bud community and the GO-MHS community which are related, but distinct communities. Interworking between these two must be established and coordinated.Alvestrand, et al Informational [Page 4]RFC 1802 Introducing Project Long Bud June 1995 In the second phase of Project Long Bud, a greater number of MTAs should be added to the experiment. Cooperation with non directory- capable communities must be addressed.4.3 General Approach No large scale resources have been committed to this project. Yet, expedient deployment is desirable. Therefore, the pilot project needs to be focused and relatively short-lived. The general approach for satisfying these requirements includes: * Use as many existing MHS-DS tools as possible. Also, continue to track the progress of tools being developed by project members and facilitate their deployment as soon as they are ready. * Coordinate efforts with existing GO-MHS community service. * Establish a core infrastructure: 4 DSAs (two in the United States and two in Europe) are set up to serve MHS-DS information. * Wherever it is technically feasable, DSA managers will establish bilateral agreements with one (or more) of the core DSAs in order to duplicate their routing information. For example, the core DSAs support the replication protocol specified in [RFC 1275] as a duplication technique. * the Long Bud pilot needs to cooperate actively with DANTE NameFlow (the continuation of the PARADISE Pilot) and other directory providers in order to promote stability and consistency of informations.4.4 Tools Needed To facilitate widespread deployment of MHS-DS routing technology and to foster interworking between directory-capable MTAs and MTAs which are not directory-capable, tools providing the following functionalities need to be developed: populate the Directory with routing information: such a tool must accept routing information specified in the standard syntax used by the GO-MHS community (see [RFC 1465]) as input, and it will load or update entries which convey the same information in the X.500 Directory.Alvestrand, et al Informational [Page 5]RFC 1802 Introducing Project Long Bud June 1995 downloading of routing information from the Directory: in order to provide a migration path for organizations not using directory-capable MTAs, a tool is needed which will read X.400 routing information from the X.500 Directory and generate static routing information from it. The syntax of the static information generated will conform to the syntax defined by the GO-MHS community, so that "classical" MTAs run as they currently do. displaying route taken by a message between two end-points: this tool should accept two parameters as input: the X.500 distinguished name of an MTA, and an X.400 O/R name. It will display the possible routes which may be taken in order to deliver a message from the specified MTA to the specified X.400 destination. This tool looks very much the same as the traceroute facility used at the IP level. These tools must use standard protocols to access the Directory (such as DAP [CCITT 88] or LDAP [RFC 1487]). Portability is encouraged. A note on quality Pilot use of this Directory information depends heavily on data quality and availability. Although the administration of DSA
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -