📄 rfc1752.txt
字号:
Bradner & Mankin [Page 10]RFC 1752 Recommendation for IPng January 19957. IPng Proposals By the time that the IPng Area was formed, the IETF had already aimed a considerable amount of IETF effort at solving the addressing and routing problems of the Internet. Several proposals had been made and some of these reached the level of having a working group chartered. A number of these groups subsequently merged forming groups with a larger consensus. These efforts represented different views on the issues which confront us and sought to optimize different aspects of the possible solutions. By February 1992 the Internet community developed four separate proposals for IPng [Gross92], "CNAT" [Callon92a], "IP Encaps" [Hinden92a], "Nimrod" [Chiappa91], and "Simple CLNP" [Callon92b]. By December 1992 three more proposals followed; "The P Internet Protocol" (PIP) [Tsuchiya92], "The Simple Internet Protocol" (SIP) [Deering92] and "TP/IX" [Ullmann93]. After the March 1992 San Diego IETF meeting "Simple CLNP" evolved into "TCP and UDP with Bigger Addresses" (TUBA) [Callon92c] and "IP Encaps" evolved into "IP Address Encapsulation" (IPAE) [Hinden92b]. By November 1993, IPAE merged with SIP while still maintaining the name SIP. This group then merged with PIP and the resulting working group called themselves "Simple Internet Protocol Plus" (SIPP). At the same time the TP/IX Working Group changed its name to "Common Architecture for the Internet" (CATNIP). None of these proposals were wrong nor were others right. All of the proposals would work in some ways providing a path to overcome the obstacles we face as the Internet expands. The task of the IPng Area was to ensure that the IETF understand the offered proposals, learn from the proposals and provide a recommendation on what path best resolves the basic issues while providing the best foundation upon which to build for the future. The IPng Area evaluated three IPng proposals as they were described in their RFC 1550 white papers: CATNIP [McGovern94] , SIPP [Hinden94a] and TUBA. [Ford94a]. The IESG viewed Nimrod as too much of a research project for consideration as an IPng candidate. Since Nimrod represents one possible future Internet routing strategy we solicited a paper describing any requirements Nimrod would put on an IPng to add to the requirements process. [Chiappa94]7.1 CATNIP "Common Architecture for the Internet (CATNIP) was conceived as a convergence protocol. CATNIP integrates CLNP, IP, and IPX. The CATNIP design provides for any of the transport layer protocols in use, forBradner & Mankin [Page 11]RFC 1752 Recommendation for IPng January 1995 example TP4, CLTP, TCP, UDP, IPX and SPX, to run over any of the network layer protocol formats: CLNP, IP (version 4), IPX, and CATNIP. With some attention paid to details, it is possible for a transport layer protocol (such as TCP) to operate properly with one end system using one network layer (e.g., IP version 4) and the other using some other network protocol, such as CLNP." [McGovern94] "The objective is to provide common ground between the Internet, OSI, and the Novell protocols, as well as to advance the Internet technology to the scale and performance of the next generation of internetwork technology." "CATNIP supports OSI Network Service Access Point (NSAP) format addresses. It also uses cache handles to provide both rapid identification of the next hop in high performance routing as well as abbreviation of the network header by permitting the addresses to be omitted when a valid cache handle is available. The fixed part of the network layer header carries the cache handles." [Sukonnik94]7.2 SIPP "Simple Internet Protocol Plus (SIPP) is a new version of IP which is designed to be an evolutionary step from IPv4. It is a natural increment to IPv4. It was not a design goal to take a radical step away from IPv4. Functions which work in IPv4 were kept in SIPP. Functions which didn't work were removed. It can be installed as a normal software upgrade in internet devices and is interoperable with the current IPv4. Its deployment strategy was designed to not have any 'flag' days. SIPP is designed to run well on high performance networks (e.g., ATM) and at the same time is still efficient for low bandwidth networks (e.g., wireless). In addition, it provides a platform for new internet functionality that will be required in the near future." [Hinden94b] "SIPP increases the IP address size from 32 bits to 64 bits, to support more levels of addressing hierarchy and a much greater number of addressable nodes. SIPP addressing can be further extended, in units of 64 bits, by a facility equivalent to IPv4's Loose Source and Record Route option, in combination with a new address type called 'cluster addresses' which identify topological regions rather than individual nodes." "SIPP changes in the way IP header options are encoded allows for more efficient forwarding, less stringent limits on the length of options, and greater flexibility for introducing new options in the future. A new capability is added to enable the labeling of packets belonging to particular traffic 'flows' for which the sender requests special handling, such as non-default quality of service or 'real-Bradner & Mankin [Page 12]RFC 1752 Recommendation for IPng January 1995 time' service." [Hinden94a]7.3 TUBA "The TCP/UDP Over CLNP-Addressed Networks (TUBA) proposal seeks to minimize the risk associated with migration to a new IP address space. In addition, this proposal is motivated by the requirement to allow the Internet to scale, which implies use of Internet applications in a very large ubiquitous worldwide Internet. It is therefore proposed that existing Internet transport and application protocols continue to operate unchanged, except for the replacement of 32-bit IP addresses with larger addresses. TUBA does not mean having to move over to OSI completely. It would mean only replacing IP with CLNP. TCP, UDP, and the traditional TCP/IP applications would run on top of CLNP." [Callon92c] "The TUBA effort will expand the ability to route Internet packets by using addresses which support more hierarchy than the current Internet Protocol (IP) address space. TUBA specifies the continued use of Internet transport protocols, in particular TCP and UDP, but specifies their encapsulation in ISO 8473 (CLNP) packets. This will allow the continued use of Internet application protocols such as FTP, SMTP, TELNET, etc. TUBA seeks to upgrade the current system by a transition from the use of IPv4 to ISO/IEC 8473 (CLNP) and the corresponding large Network Service Access Point (NSAP) address space." [Knopper94] "The TUBA proposal makes use of a simple long-term migration proposal based on a gradual update of Internet Hosts (to run Internet applications over CLNP) and DNS servers (to return larger addresses). This proposal requires routers to be updated to support forwarding of CLNP (in addition to IP). However, this proposal does not require encapsulation nor translation of packets nor address mapping. IP addresses and NSAP addresses may be assigned and used independently during the migration period. Routing and forwarding of IP and CLNP packets may be done independently." ([Callon92c]8. IPng Proposal Reviews The IPng Directorate discussed and reviewed the candidate proposals during its biweekly teleconferences and through its mailing list. In addition, members of the Big-Internet mailing list discussed many of the aspects of the proposals, particularly when the Area Directors posted several specific questions to stimulate discussion. [Big] The directorate members were requested to each evaluate the proposals in preparation for a two day retreat held near Chicago on May 19th and 20th 1994. The retreat opened with a roundtable airing of theBradner & Mankin [Page 13]RFC 1752 Recommendation for IPng January 1995 views of each of the participants, including the Area Directors, the Directorate and a number of guests invited by the working group chairs for each for the proposals. [Knopper94b] We will publish these reviews as well as a more detailed compendium review of each of the proposals as companion memos. The following table summarizes each of the three proposals reviewed against the requirements in the IPng Criteria document. They do not necessarily reflect the views of the Area Directors. "Yes" means the reviewers mainly felt the proposal met the specific criterion. "No" means the reviewers mainly felt the proposal did not meet the criterion. "Mixed" means that the reviewers had mixed reviews with none dominating. "Unknown" means that the reviewers mainly felt the documentation did not address the criterion. CATNIP SIPP TUBA ------ ---- ---- complete spec no yes mostly simplicity no no no scale yes yes yes topological flex yes yes yes performance mixed mixed mixed robust service mixed mixed yes transition mixed no mixed media indepdnt yes yes yes datagram yes yes yes config. ease unknown mixed mixed security unknown mixed mixed unique names mixed mixed mixed access to stds yes yes mixed multicast unknown yes mixed extensibility unknown mixed mixed service classes unknown yes mixed mobility unknown mixed mixed control proto unknown yes mixed tunneling unknown yes mixed8.1 CATNIP Reviews All the reviewers felt that CATNIP is not completely specified. However, many of the ideas in CATNIP are innovative and a number of reviewers felt CATNIP shows the best vision of all of the proposals. The use of Network Service Attachment Point Addresses (NSAPs) is well thought out and the routing handles are innovative. While the goal of uniting three major protocol families, IP, ISO-CLNP and Novell IPX is laudable our consensus was that the developers had not developed detailed enough plans to support realizing that goal.Bradner & Mankin [Page 14]RFC 1752 Recommendation for IPng January 1995 The plans they do describe suffer from the complexity of trying to be the union of a number of existing network protocols. Some reviewers felt that CATNIP is basically maps IPv4, IPX, and SIPP addresses into NSAPs and, as such, does not deal with the routing problems of the current and future Internet. Additionally the reviewers felt that CATNIP has poor support for multicasting and mobility and does not specifically deal with such important topics as security and autoconfiguration.8.2 SIPP Reviews Most of the reviewers, including those predisposed to other proposals, felt as one reviewer put it, that SIPP is an "aesthetically beautiful protocol well tailored to compactly satisfy today's known network requirements." The SIPP Working Group has been the most dynamic over the last year, producing a myriad of documentation detailing almost all of the aspects necessary to produce a complete protocol description. The biggest problem the reviewers had with SIPP was with IPAE, SIPP's transition plan. The overwhelming feeling was that IPAE is fatally flawed and could not be made to work reliably in an operational Internet. There was significant disagreement about the adequacy of the SIPP 64 bit address size. Although you can enumerate 10**15 end nodes in 64 bits people have different views about how much inefficiency real- world routing plans introduce. [Huitema94] The majority felt that 64 bit addresses do not provide adequate space for the hierarchy required to meet the needs of the future Internet. In addition since no one has any experience with extended addressing and routing concepts of the type proposed in SIPP, the reviewers generally felt quite uncomfortable with this methodology. The reviewers also felt that the design introduces some significant security issues. A number of reviewers felt that SIPP did not address the routing issue in any useful way. In particular, there has been no serious attempt made at developing ways to abstract topology information or to aggregate information about areas of the network.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -