📄 rfc1974.txt
字号:
Network Working Group R. FriendRequest for Comments: 1974 Stac ElectronicsCategory: Informational W. Simpson DayDreamer August 1996 PPP Stac LZS Compression ProtocolStatus of this Memo This memo provides information for the Internet community. This memo does not specify an Internet standard of any kind. Distribution of this memo is unlimited.Abstract The Point-to-Point Protocol (PPP) [1] provides a standard method for transporting multi-protocol datagrams over point-to-point links. The PPP Compression Control Protocol [2] provides a method to negotiate and utilize compression protocols over PPP encapsulated links. This document describes the use of the Stac LZS data compression algorithm, with single or multiple compression histories, for compressing PPP encapsulated packets.Table of Contents 1. Introduction .......................................... 2 1.1 Licensing ....................................... 2 1.2 Specification of Requirements ................... 3 2. LZS Packets ........................................... 3 2.1 Padding ......................................... 4 2.2 Zero Deletion/Insertion ......................... 4 2.3 Reliability and Sequencing ...................... 4 2.3.1 Reset-Request and Reset-Ack Packet Formats....... 5 2.4 Data Expansion .................................. 6 2.5 Packet Format ................................... 6 2.5.1 PPP Protocol .................................... 7 2.5.2 History Number .................................. 7 2.5.3 Check Value ..................................... 7 2.5.3.1 LCB ........................................ 7 2.5.3.2 CRC ........................................ 7 2.5.3.3 Sequence Number ............................ 8 2.5.3.3.1 History Synchronization with Sequence Numbers Example ...................... 9Friend & Simpson Informational [Page 1]RFC 1974 Stac LZS August 1996 2.5.4 History Synchronization Procedure ............... 10 2.5.5 Compressed Data ................................. 11 3. Sending Compressed Datagrams .......................... 12 3.1 Transmitter Process ............................. 12 3.2 Receiver Process ................................ 12 3.3 History Maintenance ............................. 13 3.4 History Resynchronization Mechanism ............. 14 4. Configuration Option Format ........................... 14 5. Definition of Extended Mode ........................... 16 5.1 Extended Mode Packet Format ..................... 16 5.2 Extended Mode Transmitter Process ............... 18 5.3 Extended Mode Receiver Process .................. 18 5.4 Extended Mode Synchronization ................... 19 SECURITY CONSIDERATIONS ...................................... 19 REFERENCES ................................................... 20 CHAIR'S ADDRESS ........................................... 20 AUTHORS' ADDRESSES............................................ 201. Introduction Starting with a sliding window compression history, similar to LZ1 [3], Stac Electronics developed a new, enhanced compression algorithm identified as Stac LZS. The LZS algorithm is optimized to compress all file types as efficiently as possible. Even string matches as short as two octets are effectively compressed. The Stac LZS compression algorithm supports both single compression history communication and multiple compression history communication. A single compression history will require the minimum amount of memory to implement, but may not provide as much compression as a multiple history implementation. Often, many streams of information are interleaved over the same link. Each virtual link will transmit data that is independent of other virtual links. Using multiple compression histories can improve the compression ratio of a communication link by associating separate compression histories with separate virtual links of communication.1.1. Licensing Source and object licenses are available on a non-discriminatory basis. Hardware implementations are also available. Contact Stac Electronics at the address and phone number listed with the author's address for further information.Friend & Simpson Informational [Page 2]RFC 1974 Stac LZS August 19961.2. Specification of Requirements In this document, several words are used to signify the requirements of the specification. These words are often capitalized. MUST This word, or the adjective "required", means that the definition is an absolute requirement of the specification. MUST NOT This phrase means that the definition is an absolute prohibition of the specification. SHOULD This word, or the adjective "recommended", means that there may exist valid reasons in particular circumstances to ignore this item, but the full implications MUST be understood and carefully weighed before choosing a different course. MAY This word, or the adjective "optional", means that this item is one of an allowed set of alternatives. An implementation which does not include this option MUST be prepared to interoperate with another implementation which does include the option.2. LZS Packets Before any LZS packets may be communicated, PPP must reach the Network-Layer Protocol phase. When the Compression Control Protocol (CCP) has reached the Opened state, and LZS is negotiated as the primary compression algorithm, exactly one Stac LZS datagram is encapsulated in the PPP Information field, where the PPP Protocol field indicates type hex 00FD (compressed datagram) or type hex 00FB (Individual link compressed datagram). Type hex 00FD is used when compression is negotiated over a single physical link or when compression is negotiated over a single bundle consisting of multiple physical links. Type hex 00FB is used when compression is negotiated separately over individual physical links to the same destination. For more information, please refer to PPP Compression Control Protocol. When CCP has not successfully reached the Opened state, or LZS is not the primary compression algorithm, exactly one LZS datagram is encapsulated in the PPP Information field, where the PPP Protocol field indicates type hex 4021 (Stac LZS). Note that in the latter case, use of LZS is terminated by the PPP LCP Protocol-Reject. The default format is used: a single history with no History Number field and no Check Value field (as if theFriend & Simpson Informational [Page 3]RFC 1974 Stac LZS August 1996 negotiated history count were 1). The maximum length of the Stac LZS datagram transmitted over a PPP link is the same as the maximum length of the Information field of a PPP encapsulated packet. Prior to compression, the uncompressed data begins with the PPP Protocol ID Field. Protocol-Field-Compression MAY be used on this value, if it has been successfully negotiated for the link. The PPP Protocol ID Field is followed by the original Information field. The length of the uncompressed data field is limited only by the allowed size of the compressed data field and the higher protocol layers. PPP Link Control Protocol packets MUST NOT be sent within Stac LZS packets. PPP Network Control Protocol packets MUST NOT be sent within Stac LZS packets.2.1. Padding The LZS Information field always ends with the last compressed data byte (also known as the <end marker>), which is used to disambiguate padding. This allows trailing bits as well as octets to be considered padding.2.2 Zero Deletion/Insertion When the sender does not add Padding [1], any trailing zero octets MAY be removed prior to transmission. A single trailing zero octet MUST be appended upon receipt, after removal of any framing FCS.2.3. Reliability and Sequencing When no Compression History is kept, the algorithm does not depend on a reliable link, and does not require that packets be delivered in sequence. However, per packet compression results in a lower compression ratio than it could be on a stream. Some reasons for resetting the history on a per packet basis include: - The link has a high error rate. - The resources of the transmitter or receiver limit the ability to maintain a compression history between packets. When more than 1 Compression History is negotiated, the packet sequence MUST be preserved within specific History Numbers. There is no sequence requirement between different History Numbers.Friend & Simpson Informational [Page 4]RFC 1974 Stac LZS August 1996 When one or more compression histories is negotiated on the link, the implementation MUST implement either a lower layer reliable link protocol, or keep the compressor and decompressor histories in synchronization, or both. To maintain history synchronization, the implementation MUST use the Reset-Request and Reset-Ack messages of the Compression Control Protocol and MUST use an Option 17 check mode value of sequence numbers (and MAY implement other check mode values other than none). In this case the Data field of the CCP Reset-Request and Reset-Ack MUST contain the two octet History Number to be reset, most significant octet first. If neither of these conditions are met on the data link, then the compression histories MUST be reset after transmitting each datagram. The transmitter MAY clear a Compression History at any time. The receiver is implicitly notified of this event, and the decompression history will automatically be affected. The transmitter MUST reset a history after a CCP Reset-Request for the given History Number. 2.3.1 Reset-Request and Reset-Ack Packet Formats A summary of the CCP Reset-Request and Reset-Ack packet formats for Stac LZS compressed links are shown below. The fields are transmitted from left to right. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Code | Identifier | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Code 14 for Reset-Request; 15 for Reset-Ack. Identifier On transmission, the Identifier field MUST be changed whenever the content of the Data field changes, and whenever a valid reply hasFriend & Simpson Informational [Page 5]RFC 1974 Stac LZS August 1996 been received for a previous request. For retransmissions, the Identifier MAY remain unchanged. On reception, the Identifier field of the Reset-Request is copied into the Identifier field of the Reset-Ack packet. Data The Data field contains the two octet History Number of the compression history that is to be reset, most significant octet first. This History Number value is 1 when no history number is present.2.4. Data Expansion The maximum expansion of Stac LZS is 12.5%. A Maximum Receive Unit (MRU) MAY be negotiated that is 12.5% larger than the size of a normal packet. Then, packets can always be sent compressed regardless of expansion. When the expansion plus compression header exceeds the size of the peer's MRU for the link, the PPP packet MUST be sent without compression, in the original PPP packet form with the "native" PPP Protocol ID number. The transmitter MUST reset the affected history. If it is detected that most packets are expanding (for example, due to the use of already compressed data), then the transmitter SHOULD stop sending compressed packets, and reset the appropriate history. Data compression MAY be resumed on this data link later.2.5. Packet Format A summary of the Stac LZS packet format is shown below. The fields are transmitted from left to right. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PPP Protocol | (History Number*) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | (Check Value*) | Compressed Data ... +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * Note: these fields are variable length fields as described below.Friend & Simpson Informational [Page 6]RFC 1974 Stac LZS August 1996 2.5.1. PPP Protocol The PPP Protocol field is a 2 octet field described in the Point- to-Point Protocol Encapsulation [1]. When the Stac LZS compression protocol is successfully negotiated by the PPP Compression Control Protocol [2], the value is 00FD hex or 00FB hex as described in section 2. This value MAY be compressed when Protocol-Field-Compression is negotiated. 2.5.2. History Number The history number field comprises 0, 1, or 2 octets. The number of the compression history which was used, ranging from 2 to the negotiated History Count. By default a History Count of value 1 is supported and this field is not present. If the negotiated History Count is less than 2, this field is removed. There is no need for the field when no history is kept, or only a single history is kept. If the negotiated History Count is 2 or more, but less than 256,this field is 1 octet. If 256 or more histories are negotiated, this field is 2 octets, most significant octet first. 2.5.3. Check Value The check value field comprises 0, 1, or 2 octets. By default, sequence number check is added to the packet (the field comprises 1 octet). 2.5.3.1. LCB
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -