📄 rfc2917.txt
字号:
Network Working Group K. MuthukrishnanRequest for Comments: 2917 Lucent TechnologiesCategory: Informational A. Malis Vivace Networks, Inc. September 2000 A Core MPLS IP VPN ArchitectureStatus of this Memo This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.Copyright Notice Copyright (C) The Internet Society (2000). All Rights Reserved.Abstract This memo presents an approach for building core Virtual Private Network (VPN) services in a service provider's MPLS backbone. This approach uses Multiprotocol Label Switching (MPLS) running in the backbone to provide premium services in addition to best effort services. The central vision is for the service provider to provide a virtual router service to their customers. The keystones of this architecture are ease of configuration, user security, network security, dynamic neighbor discovery, scaling and the use of existing routing protocols as they exist today without any modifications.1. Acronyms ARP Address Resolution Protocol CE Customer Edge router LSP Label Switched Path PNA Private Network Administrator SLA Service Level Agreement SP Service Provider SPED Service Provider Edge Device SPNA SP Network Administrator VMA VPN Multicast Address VPNID VPN Identifier VR Virtual Router VRC Virtual Router ConsoleMuthukrishnan & Malis Informational [Page 1]RFC 2917 Core VPNs September 20002. Introduction This memo describes an approach for building IP VPN services out of the backbone of the SP's network. Broadly speaking, two possible approaches present themselves: the overlay model and the virtual router approach. The overlay model is based on overloading some semantic(s) of existing routing protocols to carry reachability information. In this document, we focus on the virtual router service. The approach presented here does not depend on any modifications of any existing routing protocols. Neighbor discovery is aided by the use of an emulated LAN and is achieved by the use of ARP. This memo makes a concerted effort to draw the line between the SP and the PNA: the SP owns and manages layer 1 and layer 2 services while layer 3 services belong to and are manageable by the PNA. By the provisioning of fully logically independent routing domains, the PNA has been given the flexibility to use private and unregistered addresses. Due to the use of private LSPs and the use of VPNID encapsulation using label stacks over shared LSPs, data security is not an issue. The approach espoused in this memo differs from that described in RFC 2547 [Rosen1] in that no specific routing protocol has been overloaded to carry VPN routes. RFC 2547 specifies a way to modify BGP to carry VPN unicast routes across the SP's backbone. To carry multicast routes, further architectural work will be necessary.3. Virtual Routers A virtual router is a collection of threads, either static or dynamic, in a routing device, that provides routing and forwarding services much like physical routers. A virtual router need not be a separate operating system process (although it could be); it simply has to provide the illusion that a dedicated router is available to satisfy the needs of the network(s) to which it is connected. A virtual router, like its physical counterpart, is an element in a routing domain. The other routers in this domain could be physical or virtual routers themselves. Given that the virtual router connects to a specific (logically discrete) routing domain and that a physical router can support multiple virtual routers, it follows that a physical router supports multiple (logically discreet) routing domains. From the user (VPN customer) standpoint, it is imperative that the virtual router be as equivalent to a physical router as possible. In other words, with very minor and very few exceptions, the virtual router should appear for all purposes (configuration, management, monitoring and troubleshooting) like a dedicated physical router. TheMuthukrishnan & Malis Informational [Page 2]RFC 2917 Core VPNs September 2000 main motivation behind this requirement is to avoid upgrading or re- configuring the large installed base of routers and to avoid retraining of network administrators. The aspects of a router that a virtual router needs to emulate are: 1. Configuration of any combination of routing protocols 2. Monitoring of the network 3. Troubleshooting. Every VPN has a logically independent routing domain. This enhances the SP's ability to offer a fully flexible virtual router service that can fully serve the SP's customer without requiring physical per-VPN routers. This means that the SP's "hardware" investments, namely routers and links between them, can be re-used by multiple customers.4. Objectives 1. Easy, scalable configuration of VPN endpoints in the service provider network. At most, one piece of configuration should be necessary when a CE is added. 2. No use of SP resources that are globally unique and hard to get such as IP addresses and subnets. 3. Dynamic discovery of VRs (Virtual Routers) in the SP's cloud. This is an optional, but extremely valuable "keep it simple" goal. 4. Virtual Routers should be fully configurable and monitorable by the VPN network administrator. This provides the PNA with the flexibility to either configure the VPN themselves or outsource configuration tasks to the SP. 5. Quality of data forwarding should be configurable on a VPN-by-VPN basis. This should translate to continuous (but perhaps discrete) grades of service. Some examples include best effort, dedicated bandwidth, QOS, and policy based forwarding services. 6. Differentiated services should be configurable on a VPN-by-VPN basis, perhaps based on LSPs set up for exclusive use for forwarding data traffic in the VPN.Muthukrishnan & Malis Informational [Page 3]RFC 2917 Core VPNs September 2000 7. Security of internet routers extended to virtual routers. This means that the virtual router's data forwarding and routing functions should be as secure as a dedicated, private physical router. There should be no unintended leak of information (user data and reachability information) from one routing domain to another. 8. Specific routing protocols should not be mandated between virtual routers. This is critical to ensuring the VPN customer can setup the network and policies as the customer sees fit. For example, some protocols are strong in filtering, while others are strong in traffic engineering. The VPN customer might want to exploit both to achieve "best of breed" network quality. 9. No special extensions to existing routing protocols such as BGP, RIP, OSPF, ISIS etc. This is critical to allowing the future addition of other services such as NHRP and multicast. In addition, as advances and addenda are made to existing protocols (such as traffic engineering extensions to ISIS and OSPF), they can be easily incorporated into the VPN implementation.5. Architectural Requirements The service provider network must run some form of multicast routing to all nodes that will have VPN connections and to nodes that must forward multicast datagrams for virtual router discovery. A specific multicast routing protocol is not mandated. An SP may run MOSPF or DVMRP or any other protocol.6. Architectural Outline 1. Every VPN is assigned a VPNID which is unique within the SP's network. This identifier unambiguously identifies the VPN with which a packet or connection is associated. The VPNID of zero is reserved; it is associated with and represents the public internet. It is recommended, but not required that these VPN identifiers will be compliant with RFC 2685 [Fox]. 2. The VPN service is offered in the form of a Virtual Router service. These VRs reside in the SPED and are as such confined to the edge of the SP's cloud. The VRs will use the SP's network for data and control packet forwarding but are otherwise invisible outside the SPEDs. 3. The "size" of the VR contracted to the VPN in a given SPED is expressed by the quantity of IP resources such as routing interfaces, route filters, routing entries etc. This is entirely under the control of the SP and provides the fine granularityMuthukrishnan & Malis Informational [Page 4]RFC 2917 Core VPNs September 2000 that the SP requires to offer virtually infinite grades of VR service on a per-SPED level. [Example: one SPED may be the aggregating point (say headquarters of the corporation) for a given VPN and a number of other SPEDs may be access points (branch offices). In this case, the SPED connected to the headquarters may be contracted to provide a large VR while the SPEDs connected to the branch offices may house small, perhaps stub VRs]. This provision also allows the SP to design the network with an end goal of distributing the load among the routers in the network. 4. One indicator of the VPN size is the number of SPEDs in the SP's network that have connections to CPE routers in that VPN. In this respect, a VPN with many sites that need to be connected is a "large" VPN whereas one with a few sites is a "small" VPN. Also, it is conceivable that a VPN grows or shrinks in size over time. VPNs may even merge due to corporate mergers, acquisitions and partnering agreements. These changes are easy to accommodate in this architecture, as globally unique IP resources do not have to be dedicated or assigned to VPNs. The number of SPEDs is not limited by any artificial configuration limits. 5. The SP owns and manages Layer 1 and Layer 2 entities. To be specific, the SP controls physical switches or routers, physical links, logical layer 2 connections (such as DLCI in Frame Relay and VPI/VCI in ATM) and LSPs (and their assignment to specific VPNs). In the context of VPNs, it is the SP's responsibility to contract and assign layer 2 entities to specific VPNs. 6. Layer 3 entities belong to and are manageable by the PNA. Examples of these entities include IP interfaces, choice of dynamic routing protocols or static routes, and routing interfaces. Note that although Layer 3 configuration logically falls under the PNA's area of responsibility, it is not necessary for the PNA to execute it. It is quite viable for the PNA to outsource the IP administration of the virtual routers to the Service Provider. Regardless of who assumes responsibility for configuration and monitoring, this approach provides a full routing domain view to the PNA and empowers the PNA to design the network to achieve intranet, extranet and traffic engineering goals. 7. The VPNs can be managed as if physical routers rather than VRs were deployed. Therefore, management may be performed using SNMP or other similar methods or directly at the VR console (VRC).Muthukrishnan & Malis Informational [Page 5]RFC 2917 Core VPNs September 2000 8. Industry-standard troubleshooting tools such as 'ping,' 'traceroute,' in a routing domain domain comprised exclusively of dedicated physical routers. Therefore, monitoring and .bp troubleshooting may be performed using SNMP or similar methods, but may also include the use of these standard tools. Again, the VRC may be used for these purposes just like any physical router. 9. Since the VRC is visible to the user, router specific security checks need to be put in place to make sure the VPN user is allowed access to Layer 3 resources in that VPN only and is disallowed from accessing physical resources in the router. Most routers achieve this through the use of database views. 10. The VRC is available to the SP as well. If configuration and
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -