📄 rfc1009.txt
字号:
There is some argument that the Source Quench should be sent before the gateway is forced to drop datagrams [62]. For example, a parameter X could be established and set to have Source Quench sent when only X buffers remain. Or, a parameter Y could be established and set to have Source Quench sent when only Y per cent of the buffers remain. Two problems for a gateway sending Source Quench are: (1) the consumption of bandwidth on the reverse path, and (2) the use of gateway CPU time. To ameliorate these problems, a gateway must be prepared to limit the frequency with which it sends Source Quench messages. This may be on the basis of a count (e.g., only send a Source Quench for every N dropped datagrams overall or per given source host), or on the basis of a time (e.g., send a Source Quench to a given source host or overall at most once per T millseconds). The parameters (e.g., N or T) must be settable as part of the configuration of the gateway; furthermore, there should be some configuration setting which disables sending Source Quenches. These configuration parameters, including disabling, should ideally be specifiable separately for each network interface. Note that a gateway itself may receive a Source Quench as the result of sending a datagram targeted to another gateway. Such datagrams might be an EGP update, for example. 2.2.4. Time Exceeded The ICMP Time Exceeded message may be sent when a gateway discards a datagram due to the TTL being reduced to zero. ItBraden & Postel [Page 17]RFC 1009 - Requirements for Internet Gateways June 1987 may also be sent by a gateway if the fragments of a datagram addressed to the gateway itself cannot be reassembled before the time limit. 2.2.5. Parameter Problem The ICMP Parameter Problem message may be sent to the source host for any problem not specifically covered by another ICMP message. 2.2.6. Address Mask Host and gateway implementations are expected to support the ICMP Address Mask messages described in RFC-950 [21]. 2.2.7. Timestamp The ICMP Timestamp message has proven to be useful for diagnosing Internet problems. The preferred form for a timestamp value, the "standard value", is in milliseconds since midnight GMT. However, it may be difficult to provide this value with millisecond resolution. For example, many systems use clocks which update only at line frequency, 50 or 60 times per second. Therefore, some latitude is allowed in a "standard" value: * The value must be updated at a frequency of at least 30 times per second (i.e., at most five low-order bits of the value may be undefined). * The origin of the value must be within a few minutes of midnight, i.e., the accuracy with which operators customarily set CPU clocks. To meet the second condition for a stand-alone gateway, it will be necessary to query some time server host when the gateway is booted or restarted. It is recommended that the UDP Time Server Protocol [44] be used for this purpose. A more advanced implementation would use NTP (Network Time Protocol) [45] to achieve nearly millisecond clock synchronization; however, this is not required. Even if a gateway is unable to establish its time origin, it ought to provide a "non-standard" timestamp value (i.e., with the non-standard bit set), as a time in milliseconds from system startup.Braden & Postel [Page 18]RFC 1009 - Requirements for Internet Gateways June 1987 New gateways, especially those expecting to operate at T1 or higher speeds, are expected to have at least millisecond clocks. 2.2.8. Information Request/Reply The Information Request/Reply pair was intended to support self-configuring systems such as diskless workstations, to allow them to discover their IP network numbers at boot time. However, the Reverse ARP (RARP) protocol [15] provides a better mechanism for a host to use to discover its own IP address, and RARP is recommended for this purpose. Information Request/Reply need not be implemented in a gateway. 2.2.9. Echo Request/Reply A gateway must implement ICMP Echo, since it has proven to be an extremely useful diagnostic tool. A gateway must be prepared to receive, reassemble, and echo an ICMP Echo Request datagram at least as large as the maximum of 576 and the MTU's of all of the connected networks. See the discussion of IP reassembly in gateways, Section 2.1. The following rules resolve the question of the use of IP source routes in Echo Request and Reply datagrams. Suppose a gateway D receives an ICMP Echo Request addressed to itself from host S. 1. If the Echo Request contained no source route, D should send an Echo Reply back to S using its normal routing rules. As a result, the Echo Reply may take a different path than the Request; however, in any case, the pair will sample the complete round-trip path which any other higher-level protocol (e.g., TCP) would use for its data and ACK segments between S and D. 2. If the Echo Request did contain a source route, D should send an Echo Reply back to S using as a source route the return route built up in the source-routing option of the Echo Request.Braden & Postel [Page 19]RFC 1009 - Requirements for Internet Gateways June 1987 2.3. Exterior Gateway Protocol (EGP) EGP is the protocol used to exchange reachability information between Autonomous Systems of gateways, and is defined in RFC-904 [11]. See also RFC-827 [51], RFC-888 [46], and RFC-975 [27] for background information. The most widely used EGP implementation is described in RFC-911 [13]. When a dynamic routing algorithm is operated in the gateways of an Autonomous System (AS), the routing data-base must be coupled to the EGP implementation. This coupling should ensure that, when a net is determined to be unreachable by the routing algorithm, the net will not be declared reachable to other ASs via EGP. This requirement is designed to minimize spurious traffic to "black holes" and to ensure fair utilization of the resources on other systems. The present EGP specification defines a model with serious limitations, most importantly a restriction against propagating "third party" EGP information in order to prevent long-lived routing loops [27]. This effectively limits EGP to a two-level hierarchy; the top level is formed by the "core" AS, while the lower level is composed of those ASs which are direct neighbor gateways to the core AS. In practice, in the current Internet, nearly all of the "core gateways" are connected to the ARPANET, while the lower level is composed of those ASs which are directly gatewayed to the ARPANET or MILNET. RFC-975 [27] suggested one way to generalize EGP to lessen these topology restrictions; it has not been adopted as an official specification, although its ideas are finding their way into the new EGP developments. There are efforts underway in the research community to develop an EGP generalization which will remove these restrictions. In EGP, there is no standard interpretation (i.e., metric) for the distance fields in the update messages, so distances are comparable only among gateways of the same AS. In using EGP data, a gateway should compare the distances among gateways of the same AS and prefer a route to that gateway which has the smallest distance value. The values to be announced in the distance fields for particular networks within the local AS should be a gateway configuration parameter; by suitable choice of these values, it will be possible to arrange primary and backup paths from other AS's. There are other EGP parameters, such as polling intervals, which also need to be set in the gateway configuration.Braden & Postel [Page 20]RFC 1009 - Requirements for Internet Gateways June 1987 When routing updates become large they must be transmitted in parts. One strategy is to use IP fragmentation, another is to explicitly send the routing information in sections. The Internet Engineering Task Force is currently preparing a recommendation on this and other EGP engineering issues. 2.4. Address Resolution Protocol (ARP) ARP is an auxiliary protocol used to perform dynamic address translation between LAN hardware addresses and Internet addresses, and is described in RFC-826 [4]. ARP depends upon local network broadcast. In normal ARP usage, the initiating host broadcasts an ARP Request carrying a target IP address; the corresponding target host, recognizing its own IP address, sends back an ARP Reply containing its own hardware interface address. A variation on this procedure, called "proxy ARP", has been used by gateways attached to broadcast LANs [14]. The gateway sends an ARP Reply specifying its interface address in response to an ARP Request for a target IP address which is not on the directly-connected network but for which the gateway offers an appropriate route. By observing ARP and proxy ARP traffic, a gateway may accumulate a routing data-base [14]. Proxy ARP (also known in some quarters as "promiscuous ARP" or "the ARP hack") is useful for routing datagrams from hosts which do not implement the standard Internet routing rules fully -- for example, host implementations which predate the introduction of subnetting. Proxy ARP for subnetting is discussed in detail in RFC-925 [14]. Reverse ARP (RARP) allows a host to map an Ethernet interface address into an IP address [15]. RARP is intended to allow a self-configuring host to learn its own IP address from a server at boot time. 2.5. Constituent Network Access Protocols See Section 3.Braden & Postel [Page 21]RFC 1009 - Requirements for Internet Gateways June 1987 2.6. Interior Gateway Protocols Distributed routing algorithms continue to be the subject of research and engineering, and it is likely that advances will be made over the next several years. A good algorithm needs to respond rapidly to real changes in Internet connectivity, yet be stable and insensitive to transients. It needs to synchronize the distributed data-base across gateways of its Autonomous System rapidly (to avoid routing loops), while consuming only a small fraction of the available bandwidth. Distributed routing algorithms are commonly broken down into the following three components: A. An algorithm to assign a "length" to each Internet path. The "length" may be a simple count of hops (1, or infinity if the path is broken), or an administratively-assigned cost, or some dynamically-measured cost (usually an average delay). In order to determine a path length, each gateway must at least test whether each of its neighbors is reachable; for this purpose, there must be a "reachability" or "neighbor up/down" protocol. B. An algorithm to compute the shortest path(s) to a given destination. C. A gateway-gateway protocol used to exchange path length and routing information among gateways. The most commonly-used IGPs in Internet gateways are as follows. 2.6.1. Gateway-to-Gateway Protocol (GGP) GGP was designed and implemented by BBN for the first experimental Internet gateways [41]. It is still in use in the BBN LSI/11 gateways, but is regarded as having serious drawbacks [58]. GGP is based upon an algorithm used in the early ARPANET IMPs and later replaced by SPF (see below).
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -