📄 rfc1009.txt
字号:
connected network provides a broadcast or multicast capability; these will be discussed later. 1.2. The Internet Gateway Model There are two basic models for interconnecting local-area networks and wide-area (or long-haul) networks in the Internet. In the first, the local-area network is assigned a network number and all gateways in the Internet must know how to route to that network. In the second, the local-area network shares (a small part of) the address space of the wide-area network. Gateways that support this second model are called "address sharing gateways" or "transparent gateways". The focus of this memo is on gateways that support the first model, but this is not intended to exclude the use of transparent gateways. 1.2.1. Internet Gateways An Internet gateway is an IP-level router that performs the following functions: 1. Conforms to specific Internet protocols specified in this document, including the Internet Protocol (IP), Internet Control Message Protocol (ICMP), and others as necessary. See Section 2 (Protocols Required). 2. Interfaces to two or more packet networks. For eachBraden & Postel [Page 6]RFC 1009 - Requirements for Internet Gateways June 1987 connected network the gateway must implement the functions required by that network. These functions typically include: a. encapsulating and decapsulating the IP datagrams with the connected network framing (e.g., an Ethernet header and checksum); b. sending and receiving IP datagrams up to the maximum size supported by that network, this size is the network's "Maximum Transmission Unit" or "MTU"; c. translating the IP destination address into an appropriate network-level address for the connected network (e.g., an Ethernet hardware address); d. responding to the network flow control and error indication, if any. See Section 3 (Constituent Network Interface), for details on particular constituent network interfaces. 3. Receives and forwards Internet datagrams. Important issues are buffer management, congestion control, and fairness. See Section 4 (Gateway Algorithms). a. Recognizes various error conditions and generates ICMP error and information messages as required. b. Drops datagrams whose time-to-live fields have reached zero. c. Fragments datagrams when necessary to fit into the MTU of the next network. 4. Chooses a next-hop destination for each IP datagram, based on the information in its routing data-base. See Section 4 (Gateway Algorithms). 5. Supports an interior gateway protocol (IGP) to carry out distributed routing and reachability algorithms with the other gateways in the same autonomous system. In addition, some gateways will need to support the Exterior Gateway Protocol (EGP) to exchange topological information with other autonomous systems. See Section 4 (Gateway Algorithms).Braden & Postel [Page 7]RFC 1009 - Requirements for Internet Gateways June 1987 6. Provides system support facilities, including loading, debugging, status reporting, exception reporting and control. See Section 5 (Operation and Maintenance). 1.2.2. Embedded Gateways A gateway may be a stand-alone computer system, dedicated to its IP router functions. Alternatively, it is possible to embed gateway functionality within a host operating system which supports connections to two or more networks. The best-known example of an operating system with embedded gateway code is the Berkeley BSD system. The embedded gateway feature seems to make internetting easy, but it has a number of hidden pitfalls: 1. If a host has only a single constituent-network interface, it should not act as a gateway. For example, hosts with embedded gateway code that gratuitously forward broadcast packets or datagrams on the same net often cause packet avalanches. 2. If a (multihomed) host acts as a gateway, it must implement ALL the relevant gateway requirements contained in this document. For example, the routing protocol issues (see Sections 2.6 and 4.1) and the control and monitoring problems are as hard and important for embedded gateways as for stand-alone gateways. Since Internet gateway requirements and specifications may change independently of operating system changes, an administration that operates an embedded gateway in the Internet is strongly advised to have an ability to maintain and update the gateway code (e.g., this might require gateway code source). 3. Once a host runs embedded gateway code, it becomes part of the Internet system. Thus, errors in software or configuration of such a host can hinder communication between other hosts. As a consequence, the host administrator must lose some autonomy. In many circumstances, a host administrator will need to disable gateway coded embedded in the operating system, and any embedded gateway code must be organized so it can be easily disabled.Braden & Postel [Page 8]RFC 1009 - Requirements for Internet Gateways June 1987 4. If a host running embedded gateway code is concurrently used for other services, the O&M (operation and maintenance) requirements for the two modes of use may be in serious conflict. For example, gateway O&M will in many cases be performed remotely by an operations center; this may require privileged system access which the host administrator would not normally want to distribute. 1.2.3. Transparent Gateways The basic idea of a transparent gateway is that the hosts on the local-area network behind such a gateway share the address space of the wide-area network in front of the gateway. In certain situations this is a very useful approach and the limitations do not present significant drawbacks. The words "in front" and "behind" indicate one of the limitations of this approach: this model of interconnection is suitable only for a geographically (and topologically) limited stub environment. It requires that there be some form of logical addressing in the network level addressing of the wide-area network (that is, all the IP addresses in the local environment map to a few (usually one) physical address in the wide-area network, in a way consistent with the { IP address <-> network address } mapping used throughout the wide-area network). Multihoming is possible on one wide-area network, but may present routing problems if the interfaces are geographically or topologically separated. Multihoming on two (or more) wide-area networks is a problem due to the confusion of addresses. The behavior that hosts see from other hosts in what is apparently the same network may differ if the transparent gateway cannot fully emulate the normal wide-area network service. For example, if there were a transparent gateway between the ARPANET and an Ethernet, a remote host would not receive a Destination Dead message [3] if it sent a datagram to an Ethernet host that was powered off.Braden & Postel [Page 9]RFC 1009 - Requirements for Internet Gateways June 1987 1.3. Gateway Characteristics Every Internet gateway must perform the functions listed above. However, a vendor will have many choices on power, complexity, and features for a particular gateway product. It may be helpful to observe that the Internet system is neither homogeneous nor fully-connected. For reasons of technology and geography, it is growing into a global-interconnect system plus a "fringe" of LANs around the "edge". * The global-interconnect system is comprised of a number of wide-area networks to which are attached gateways of several ASs; there are relatively few hosts connected directly to it. The global-interconnect system includes the ARPANET, the NSFNET "backbone", the various NSF regional and consortium networks, other ARPA sponsored networks such as the SATNET and the WBNET, and the DCA sponsored MILNET. It is anticipated that additional networks sponsored by these and other agencies (such as NASA and DOE) will join the global-interconnect system. * Most hosts are connected to LANs, and many organizations have clusters of LANs interconnected by local gateways. Each such cluster is connected by gateways at one or more points into the global-interconnect system. If it is connected at only one point, a LAN is known as a "stub" network. Gateways in the global-interconnect system generally require: * Advanced routing and forwarding algorithms These gateways need routing algorithms which are highly dynamic and also offer type-of-service routing. Congestion is still not a completely resolved issue [24]. Improvements to the current situation will be implemented soon, as the research community is actively working on these issues. * High availability These gateways need to be highly reliable, providing 24 hour a day, 7 days a week service. In case of failure, they must recover quickly. * Advanced O&M features These gateways will typically be operated remotely from a regional or national monitoring center. In theirBraden & Postel [Page 10]RFC 1009 - Requirements for Internet Gateways June 1987 interconnect role, they will need to provide sophisticated means for monitoring and measuring traffic and other events and for diagnosing faults. * High performance Although long-haul lines in the Internet today are most frequently 56 Kbps, DS1 lines (1.5 Mbps) are of increasing importance, and even higher speeds are likely in the future. Full-duplex operation is provided at any of these speeds. The average size of Internet datagrams is rather small, of the order of 100 bytes. At DS1 line speeds, the per-datagram processing capability of the gateways, rather than the line speed, is likely to be the bottleneck. To fill a DS1 line with average-sized Internet datagrams, a gateway would need to pass -- receive, route, and send -- 2,000 datagrams per second per interface. That is, a gateway which supported 3 DS1 lines and and Ethernet interface would need to be able to pass a dazzling 2,000 datagrams per second in each direction on each of the interfaces, or a aggregate throughput of 8,000 datagrams per second, in order to fully utilize DS1 lines. This is beyond the capability of current gateways. Note: some vendors count input and output operations separately in datagrams per second figures; for these vendors, the above example would imply 16,000 datagrams per second ! Gateways used in the "LAN fringe" (e.g., campus networks) will generally have to meet less stringent requirements for performance, availability, and maintenance. These may be high or medium-performance devices, probably competitively procured from several different vendors and operated by an internal organization (e.g., a campus computing center). The design of these gateways should emphasize low average delay and good burst performance, together with delay and type-of-service sensitive resource management. In this environment, there will be less formal O&M, more hand-crafted static configurations for special cases, and more need for inter-operation with gateways of other vendors. The routing mechanism will need to be very flexible, but need not be so highly dynamic as in the global-interconnect system. It is important to realize that Internet gateways normally operate in an unattended mode, but that equipment and software faults can have a wide-spread (sometimes global) effect. In any environment,
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -