📄 rfc2943.txt
字号:
RFC 2943 TELNET Authentication Using DSA September 2000 Client (Party A) Server (Party B) IAC SB AUTHENTICATION IS DSS AUTH_CLIENT_TO_SERVER | AUTH_HOW_MUTUAL | ENCRYPT_OFF | INI_CRED_FWD_OFF DSS_CERTA_TOKENAB Sequence( TokenID, CertA, TokenAB ) IAC SE --> <-- IAC SB AUTHENTICATION REPLY DSS AUTH_CLIENT_TO_SERVER | AUTH_HOW_MUTUAL | ENCRYPT_OFF | INI_CRED_FWD_OFF DSS_CERTB_TOKENBA2 Sequence( TokenID, CertB, TokenBA2 ) IAC SE--------------------------------------------------------------------- Figure 24. ASN.1 Syntax As stated earlier, a conformant subset of the defined fields and subfields from FIPS PUB 196 have been selected. This section provides the ASN.1 syntax for that conformant subset. Figure 1 and Figure 2 include representations of the structures defined in this section. Implementors should refer to the following table to determine the ASN.1 definitions that match the figure references: Figure 1 Sequence( TokenID, TokenBA ) MessageBA Sequence( TokenID, CertA, TokenAB ) MessageAB Figure 2 Sequence( TokenID, TokenBA ) MessageBA Sequence( TokenID, CertA, TokenAB ) MessageAB Sequence( TokenID, CertB, TokenBA2 ) MessageBA2 The following ASN.1 definitions specify the conformant subset of FIPS 196. For simplicity, no optional fields or subfields are included. The ASN.1 definition for CertificationPath is imported from CCITT Recommendation X.509 [X.509], and The ASN.1 definition for Name is imported from CCITT Recommendation X.501 [X.501]. These ASN.1Housley, et al. Standards Track [Page 7]RFC 2943 TELNET Authentication Using DSA September 2000 definitions are not repeated here. All DSA signature values are encoded as a sequence of two integers, employing the same conventions specified in RFC 2459, section 7.2.2. MessageBA ::= SEQUENCE { tokenId [0] TokenId, tokenBA TokenBA } TokenBA ::= SEQUENCE { ranB RandomNumber, timestampB TimeStamp } MessageAB ::= SEQUENCE { tokenId [0] TokenId, certA [1] CertData, tokenAB TokenAB } TokenAB ::= SEQUENCE { ranA RandomNumber, ranB RandomNumber, entityB EntityName, timestampB TimeStamp, absigValue OCTET STRING } MessageBA2 ::= SEQUENCE { tokenId [0] TokenId, certB [1] CertData, tokenBA2 TokenBA2 } TokenBA2 ::= SEQUENCE { ranB [0] RandomNumber, ranA [1] RandomNumber, entityA EntityName, timestampB2 TimeStamp, ba2sigValue OCTET STRING } CertData ::= SEQUENCE { certPath [0] CertificationPath } -- see X.509 EntityName ::= SEQUENCE OF CHOICE { -- only allow one! directoryName [4] Name } -- see X.501 RandomNumber ::= INTEGER -- 20 octetsHousley, et al. Standards Track [Page 8]RFC 2943 TELNET Authentication Using DSA September 2000 TokenId ::= SEQUENCE { tokenType INTEGER, -- see table below protoVerNo INTEGER } -- always 0x0001 TimeStamp ::= GeneralizedTime The TokenId.TokenType is used to distinguish the message type and the authentication type (either unilateral or mutual). The following table provides the values needed to implement this specification: Message Type Authentication Type TokenId.TokenType MessageBA Unilateral 0x0001 Mutual 0x0011 MessageAB Unilateral 0x0002 Mutual 0x0012 MessageBA Mutual 0x00135. Security Considerations This entire memo is about security mechanisms. For DSA to provide the authentication discussed, the implementation must protect the private key from disclosure. Implementations must randomly generate DSS private keys, 'k' values used in DSS signatures, and nonces. The use of inadequate pseudo- random number generators (PRNGs) to generate cryptographic values can result in little or no security. An attacker may find it much easier to reproduce the PRNG environment that produced the values, searching the resulting small set of possibilities, rather than using a brute force search. The generation of quality random numbers is difficult. RFC 1750 [RFC1750] offers important guidance in this area, and Appendix 3 of FIPS PUB 186 [FIPS186] provides one quality PRNG technique.6. Acknowledgements We would like to thank William Nace for support during implementation of this specification.Housley, et al. Standards Track [Page 9]RFC 2943 TELNET Authentication Using DSA September 20007. IANA Considerations The authentication type DSS and its associated suboption values are registered with IANA. Any suboption values used to extend the protocol as described in this document must be registered with IANA before use. IANA is instructed not to issue new suboption values without submission of documentation of their use.8. References FIPS180-1 Secure Hash Standard. FIPS Pub 180-1. April 17, 1995. <http://csrc.nist.gov/fips/fips180-1.pdf> FIPS186 Digital Signature Standard (DSS). FIPS Pub 186. May 19, 1994. <http://csrc.nist.gov/fips/fips186.pdf> FIPS196 Standard for Entity Authentication Using Public Key Cryptography. FIPS Pub 196. February 18, 1997. <http://csrc.nist.gov/fips/fips196.pdf> RFC1750 Eastlake, 3rd, D., Crocker, S. and J. Schiller, "Randomness Recommendations for Security", RFC 1750, December 1994. RFC2459 Housley, R., Ford, W., Polk, W. and D. Solo, "Internet X.509 Public Key Infrastructure: X.509 Certificate and CRL Profile", RFC 2459, January 1999. RFC2941 T'so, T. and J. Altman, "Telnet Authentication Option", RFC 2941, September 2000. X.208 CCITT. Recommendation X.208: Specification of Abstract Syntax Notation One (ASN.1). 1988. X.501 CCITT. Recommendation X.501: The Directory - Models. 1988. X.509 CCITT. Recommendation X.509: The Directory - Authentication Framework. 1988.Housley, et al. Standards Track [Page 10]RFC 2943 TELNET Authentication Using DSA September 20009. Authors' Addresses Russell Housley SPYRUS 381 Elden Street, Suite 1120 Herndon, VA 20172 USA EMail: housley@spyrus.com Todd Horting SPYRUS 381 Elden Street, Suite 1120 Herndon, VA 20172 USA EMail: thorting@spyrus.com Peter Yee SPYRUS 5303 Betsy Ross Drive Santa Clara, CA 95054 USA EMail: yee@spyrus.comHousley, et al. Standards Track [Page 11]RFC 2943 TELNET Authentication Using DSA September 200010. Full Copyright Statement Copyright (C) The Internet Society (2000). All Rights Reserved. This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English. The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns. This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.Acknowledgement Funding for the RFC Editor function is currently provided by the Internet Society.Housley, et al. Standards Track [Page 12]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -