📄 rfc2943.txt
字号:
Network Working Group R. HousleyRequest for Comments: 2943 T. HortingCategory: Standards Track P. Yee SPYRUS September 2000 TELNET Authentication Using DSAStatus of this Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.Copyright Notice Copyright (C) The Internet Society (2000). All Rights Reserved.Abstract This document defines a telnet authentication mechanism using the Digital Signature Algorithm (DSA) [FIPS186]. It relies on the Telnet Authentication Option [RFC2941].1. Command Names and Codes AUTHENTICATION 37 Authentication Commands: IS 0 SEND 1 REPLY 2 NAME 3 Authentication Types: DSS 14 Modifiers: AUTH_WHO_MASK 1 AUTH_CLIENT_TO_SERVER 0 AUTH_SERVER_TO CLIENT 1Housley, et al. Standards Track [Page 1]RFC 2943 TELNET Authentication Using DSA September 2000 AUTH_HOW_MASK 2 AUTH_HOW_ONE_WAY 0 AUTH_HOW_MUTUAL 2 ENCRYPT_MASK 20 ENCRYPT_OFF 0 ENCRYPT_USING_TELOPT 4 ENCRYPT_AFTER_EXCHANGE 16 ENCRYPT_RESERVED 20 INI_CRED_FWD_MASK 8 INI_CRED_FWD_OFF 0 INI_CRED_FWD_ON 8 Sub-option Commands: DSS_INITIALIZE 1 DSS_TOKENBA 2 DSS_CERTA_TOKENAB 3 DSS_CERTB_TOKENBA2 42. TELNET Security Extensions TELNET, as a protocol, has no concept of security. Without negotiated options, it merely passes characters back and forth between the NVTs represented by the two TELNET processes. In its most common usage as a protocol for remote terminal access (TCP port 23), TELNET connects to a server that requires user-level authentication through a user name and password in the clear; the server does not authenticate itself to the user. The TELNET Authentication Option provides for user authentication and server authentication. User authentication replaces or augments the normal host password mechanism. Server authentication is normally done in conjunction with user authentication. In order to support these security services, the two TELNET entities must first negotiate their willingness to support the TELNET Authentication Option. Upon agreeing to support this option, the parties are then able to perform sub-option negotiations to the authentication protocol to be used, and possibly the remote user name to be used for authorization checking. Authentication and parameter negotiation occur within an unbounded series of exchanges. The server proposes a preference-ordered list of authentication types (mechanisms) which it supports. In addition to listing the mechanisms it supports, the server qualifies each mechanism with a modifier that specifies whether the authenticationHousley, et al. Standards Track [Page 2]RFC 2943 TELNET Authentication Using DSA September 2000 is to be one-way or mutual, and in which direction the authentication is to be performed. The client selects one mechanism from the list and responds to the server indicating its choice and the first set of authentication data needed for the selected authentication type. The server and the client then proceed through whatever number of iterations are required to arrive at the requested authentication.3. Use of Digital Signature Algorithm (DSA) DSA is also known as the Digital Signature Standard (DSS), and the names are used interchangeably. This paper specifies a method in which DSA may be used to achieve certain security services when used in conjunction with the TELNET Authentication Option. SHA-1 [FIPS180-1] is used with DSA [FIPS186]. DSA may provide either unilateral or mutual authentication. Due to TELNET's character-by-character nature, it is not well-suited to the application of integrity-only services, therefore use of the DSA profile provides authentication but it does not provide session integrity. This specification follows the token and exchanges defined in NIST FIPS PUB 196 [FIPS196], Standard for Public Key Cryptographic Entity Authentication Mechanisms including Appendix A on ASN.1 encoding of messages and tokens. All data that is covered by a digital signature must be encoded using the Distinguished Encoding Rules (DER). However, other data may use either the Basic Encoding Rules (BER) or DER [X.208].3.1. Unilateral Authentication with DSA Unilateral authentication must be done client-to-server. What follows are the protocol steps necessary to perform DSA authentication as specified in FIPS PUB 196 under the TELNET Authentication Option framework. Where failure modes are encountered, the return codes follow those specified in the TELNET Authentication Option. They are not enumerated here, as they are invariant among the mechanisms used. FIPS PUB 196 employs a set of exchanges that are transferred to provide authentication. Each exchange employs various fields and tokens, some of which are optional. In addition, each token has several subfields that are optional. A conformant subset of the fields and subfields have been selected. The tokens are ASN.1 encoded as defined in Appendix A of FIPS PUB 196, and each token is named to indicate the direction in which it flows (e.g., TokenBA flows from Party B to Party A). All data that is covered by a digital signature must be encoded using theHousley, et al. Standards Track [Page 3]RFC 2943 TELNET Authentication Using DSA September 2000 Distinguished Encoding Rules (DER). Data that is not covered by a digital signature may use either the Basic Encoding Rules (BER) or DER [X.208]. Figure 1 illustrates the exchanges for unilateral authentication. During authentication, the client may provide the user name to the server by using the authentication name sub-option. If the name sub-option is not used, the server will generally prompt for a name and password in the clear. The name sub-option must be sent after the server sends the list of authentication types supported and before the client finishes the authentication exchange, this ensures that the server will not prompt for a user name and password. In figure 1, the name sub-option is sent immediately after the server presents the list of authentication types supported. For one-way DSS authentication, the two-octet authentication type pair is DSS AUTH_CLIENT_TO_SERVER | AUTH_HOW_ONE_WAY | ENCRYPT_OFF | INI_CRED_FWD_OFF. This indicates that the DSS authentication mechanism will be used to authenticate the client to the server and that no encryption will be performed. CertA is the clients certificate. Both certificates are X.509 certificates that contain DSS public keys[RFC2459]. The client must validate the server's certificate before using the DSA public key it contains. Within the unbounded authentication exchange, implementation is greatly simplified if each portion of the exchange carries a unique identifier. For this reason, a single octet sub-option identifier is carried immediately after the two-octet authentication type pair. The exchanges detailed in Figure 1 below presume knowledge of FIPS PUB 196 and the TELNET Authentication Option. The client is Party A, while the server is Party B. At the end of the exchanges, the client is authenticated to the server.Housley, et al. Standards Track [Page 4]RFC 2943 TELNET Authentication Using DSA September 2000------------------------------------------------------------------ Client (Party A) Server (Party B) <-- IAC DO AUTHENTICATION IAC WILL AUTHENTICATION --> <-- IAC SB AUTHENTICATION SEND <list of authentication options> IAC SE IAC SB AUTHENTICATION NAME <user name> --> IAC SB AUTHENTICATION IS DSS AUTH_CLIENT_TO_SERVER | AUTH_HOW_ONE_WAY | ENCRYPT_OFF | INI_CRED_FWD_OFF DSS_INITIALIZE IAC SE --> <-- IAC SB AUTHENTICATION REPLY DSS AUTH_CLIENT_TO_SERVER | AUTH_HOW_ONE_WAY | ENCRYPT_OFF | INI_CRED_FWD_OFF DSS_TOKENBA Sequence( TokenID, TokenBA ) IAC SE IAC SB AUTHENTICATION IS DSS AUTH_CLIENT_TO_SERVER | AUTH_HOW_ONE_WAY | ENCRYPT_OFF | INI_CRED_FWD_OFF DSS_CERTA_TOKENAB Sequence( TokenID, CertA, TokenAB ) IAC SE -->------------------------------------------------------------------ Figure 1Housley, et al. Standards Track [Page 5]RFC 2943 TELNET Authentication Using DSA September 20003.2. Mutual Authentication with DSA Mutual authentication is slightly more complex. Figure 2 illustrates the exchanges. For mutual DSS authentication, the two-octet authentication type pair is DSS AUTH_CLIENT_TO_SERVER | AUTH_HOW_MUTUAL | ENCRYPT_OFF | INI_CRED_FWD_OFF. This indicates that the DSS authentication mechanism will be used to mutually authenticate the client and the server and that no encryption will be performed.--------------------------------------------------------------------- Client (Party A) Server (Party B)IAC WILL AUTHENTICATION --> <-- IAC DO AUTHENTICATION <-- IAC SB AUTHENTICATION SEND <list of authentication options> IAC SE IAC SB AUTHENTICATION NAME <user name> --> IAC SB AUTHENTICATION IS DSS AUTH_CLIENT_TO_SERVER | AUTH_HOW_MUTUAL | ENCRYPT_OFF | INI_CRED_FWD_OFF DSS_INITIALIZE IAC SE --> <-- IAC SB AUTHENTICATION REPLY DSS AUTH_CLIENT_TO_SERVER | AUTH_HOW_MUTUAL | ENCRYPT_OFF | INI_CRED_FWD_OFF DSS_TOKENBA Sequence( TokenID, TokenBA ) IAC SEHousley, et al. Standards Track [Page 6]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -