📄 rfc1294.txt
字号:
RFC 1294 Multiprotocol over Frame Relay January 1992 Because of the inefficiencies of broadcasting in a Frame Relay environment, a new address resolution variation was developed. It is called Inverse ARP [11] and describes a method for resolving a protocol address when the hardware address is already known. In Frame Relay's case, the known hardware address is the DLCI. Using Inverse ARP for Frame Relay follows the same pattern as ARP and RARP use. That is the source hardware address is inserted at the receiving station. In our example, station A may use Inverse ARP to discover the protocol address of the station associated with its DLCI 50. The Inverse ARP request would be as follows: InARP Request from A (DLCI 50) ar$op 8 (InARP request) ar$sha unknown ar$spa pA ar$tha 0x0C21 (DLCI 50) ar$tpa unknown When Station B receives this packet, it will modify the source hardware address with the Q.922 address from the Frame Relay header. This way, the InARP request from A will become: ar$op 8 (InARP request) ar$sha 0x1061 ar$spa pA ar$tha 0x0C21 ar$tpa unknown. Station B will format an Inverse ARP response and send it to station A as it would for any ARP message.11. IP over Frame Relay Internet Protocol [9] (IP) datagrams sent over a Frame Relay network conform to the encapsulation described previously. Within this context, IP could be encapsulated in two different ways.Bradley, Brown, Malis [Page 22]RFC 1294 Multiprotocol over Frame Relay January 1992 1. NLPID value indicating IP +-----------------------+-----------------------+ | Q.922 Address | +-----------------------+-----------------------+ | Control (UI) 0x03 | NLPID = 0xCC | +-----------------------+-----------------------+ | IP Packet . | | . | | . | +-----------------------+-----------------------+ 2. NLPID value indicating SNAP +-----------------------+-----------------------+ | Q.922 Address | +-----------------------+-----------------------+ | Control (UI) 0x03 | pad(s) 0x00 | +-----------------------+-----------------------+ | NLPID = 0x80 | | SNAP Header +-----------------------+ OUI = 0x00-00-00 + Indicating | | IP +-----------------------+-----------------------+ | PID = 0x0800 | +-----------------------+-----------------------+ | IP packet | | . | | . | | . | +-----------------------+-----------------------+ Although both of these encapsulations are supported under the given definitions, it is advantageous to select only one method as the appropriate mechanism for encapsulating IP data. Therefore, IP data shall be encapsulated using the NLPID value of 0xCC indicating IP as shown in option 1 above. This (option 1) is more efficient in transmission (48 fewer bits), and is consistent with the encapsulation of IP in X.25.12. Other Protocols over Frame Relay As with IP encapsulation, there are alternate ways to transmit various protocols within the scope of this definition. To eliminate the conflicts, the SNAP encapsulation is only used if no NLPID value is defined for the given protocol. As an example of how this works, ISO CLNP has a NLPID defined (0x81). Therefore, the NLPID field will indicate ISO CLNP and the data packetBradley, Brown, Malis [Page 23]RFC 1294 Multiprotocol over Frame Relay January 1992 will follow immediately. The frame would be as follows: +----------------------+----------------------+ | Q.922 Address | +----------------------+----------------------+ | Control (0x03) | NLPID - 0x81 (CLNP) | +---------------------------------------------+ | CLNP packet | | . | | . | +---------------------------------------------+13. Bridging in a Frame Relay network A Frame Relay interface acting as a bridge must be able to flood, forward, and filter packets. Flooding is performed by sending the packet to all possible destinations. In the Frame Relay environment this means sending the packet through each relevant DLC. To forward a packet, a bridge must be able to associate a destination MAC address with a DLC. It is unreasonable and perhaps impossible to require bridges to statically configure an association of every possible destination MAC address with a DLC. Therefore, Frame Relay bridges must provide enough information to allow a Frame Relay interface to dynamically learn about foreign destinations beyond the set of Frame Relay stations. To accomplish dynamic learning, a bridged packet shall conform to the encapsulation described within section 7. In this way, the receiving Frame Relay interface will know to look into the bridged packet and learn the association between foreign destination and Frame Relay station.14. For Future Study It may be desirable for the two ends of a connection to have the capability to negotiate end-to-end configuration and service parameters. The actual protocol and parameters to be negotiated will be a topic of future RFCs.15. Backward Compatibility This section is included in this RFC for completeness only. It is not intended to suggest additional requirements. Some existing Frame Relay stations use the NLPID value of 0xCE toBradley, Brown, Malis [Page 24]RFC 1294 Multiprotocol over Frame Relay January 1992 indicate an escape to Ethernet Packet Types as defined in the latest version of the Assigned Numbers (RFC-1060) [7]. In this case, the frame will have the following format: +-----------------------------+ | Q.922 Address | +-- --+ | | +-----------------------------+ | Control (UI = 0x03) | +-----------------------------+ | Optional Pad(s) (0x00) | +-----------------------------+ | NLPID (0xCE) | +-----------------------------+ | Ethertype | +- -+ | | +-----------------------------+ | . | | . | | Data | | . | | . | +-----------------------------+ | Frame Check Sequence | +-- . --+ | (two octets) | +-----------------------------+ The Ethertype field is a 16-bit value used to identify a protocol type for the following PDU. In order to be fully interoperable with stations that use this encoding, Frame Relay stations may recognize the NLPID value of 0xCE and interpret the following two byte Ethertype. It is never necessary to generate this encapsulation format only to properly interpret it's meaning. For example, IP encapsulated with this NLPID value will have the following format:Bradley, Brown, Malis [Page 25]RFC 1294 Multiprotocol over Frame Relay January 1992 +-----------------------+-----------------------+ |Q.922 Address | +-----------------------+-----------------------+ |Control (UI) 0x03 | NLPID 0xCE | +-----------------------+-----------------------+ |Ethertype [7] 0x0800 | +-----------------------+-----------------------+ | IP Packet | | . | | . | +-----------------------+-----------------------+16. Appendix List of Known NLPIDs 0x00 Null Network Layer or Inactive Set (not used with Frame Relay) 0x80 SNAP 0x81 ISO CLNP 0x82 ISO ESIS 0x83 ISO ISIS 0xCC Internet IP 0xCE EtherType - unofficial temporary use List of PIDs of OUI 00-80-C2 with preserved FCS w/o preserved FCS Media ------------------ ----------------- -------------- 0x00-01 0x00-07 802.3/Ethernet 0x00-02 0x00-08 802.4 0x00-03 0x00-09 802.5 0x00-04 0x00-0A FDDI 0x00-05 0x00-0B 802.6 0x00-0D Fragments 0x00-0E BPDUs17. References [1] International Telegraph and Telephone Consultative Committee, "ISDN Data Link Layer Specification for Frame Mode Bearer Services", CCITT Recommendation Q.922, 19 April 1991 . [2] American National Standard For Telecommunications - Integrated Services Digital Network - Core Aspects of Frame Protocol for Use with Frame Relay Bearer Service, ANSI T1.618-1991, 18 June 1991.Bradley, Brown, Malis [Page 26]RFC 1294 Multiprotocol over Frame Relay January 1992 [3] Information technology - Telecommunications and Information Exchange between systems - Protocol Identification in the Network Layer, ISO/IEC TR 9577: 1990 (E) 1990-10-15. [4] Baker, Fred, "Point to Point Protocol Extensions for Bridging", Point to Point Working Group, RFC-1220, April 1991. [5] International Standard, Information Processing Systems - Local Area Networks - Logical Link Control, ISO 8802-2: 1989 (E), IEEE Std 802.2-1989, 1989-12-31. [6] Plummer, David C., An Ethernet Address Resolution Protocol", RFC-826, November 1982. [7] Reynolds, J. and Postel, J., "Assigned Numbers", RFC-1060, ISI, March 1990. [8] Finlayson, Mann, Mogul, Theimer, "A Reverse Address Resolution Protocol", RFC-903, Stanford University, June 1984. [9] Postel, J. and Reynolds, J., "A Standard for the Transmission of IP Datagrams over IEEE 802 Networks", RFC-1042, ISI, February 1988. [10] IEEE, "IEEE Standard for Local and Metropolitan Area Networks: Overview and architecture", IEEE Standards 802-1990. [11] Bradley, T., and C. Brown, "Inverse Address Resolution Protocol", RFC-1293, Wellfleet Communications, Inc., January 1992.18. Security Considerations Security issues are not addressed in this memo.19. Authors' Addresses Terry Bradley Wellfleet Communications, Inc. 15 Crosby Drive Bedford, MA 01730 Phone: (617) 275-2400 Email: tbradley@wellfleet.comBradley, Brown, Malis [Page 27]RFC 1294 Multiprotocol over Frame Relay January 1992 Caralyn Brown Wellfleet Communications, Inc. 15 Crosby Drive Bedford, MA 01730 Phone: (617) 275-2400 Email: cbrown@wellfleet.com Andrew G. Malis BBN Communications 150 CambridgePark Drive Cambridge, MA 02140 Phone: (617) 873-3419 Email: malis@bbn.comBradley, Brown, Malis [Page 28]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -