📄 rfc1294.txt
字号:
RFC 1294 Multiprotocol over Frame Relay January 1992 +---------------+---------------+ | Q.922 Address | +---------------+---------------+ | Control 0x03 | pad 0x00 | +---------------+---------------+ | NLPID 0x80 | OUI 0x00 | +---------------+---------------+ | OUI 0x80-C2 | +---------------+---------------+ | PID 0x00-0D | +---------------+---------------+ | sequence number | +---------------+---------------+ |F| RSVD |offset | +---------------+---------------+ | fragment data | | . | | . | | . | +---------------+---------------+ | FCS | +---------------+---------------+ The sequence field is a two octet identifier that is incremented every time a new complete message is fragmented. It allows detection of lost frames and is set to a random value at initialization. The reserved field is 4 bits long and is not currently defined. It must be set to 0. The final bit is a one bit field set to 1 on the last fragment and set to 0 for all other fragments. The offset field is an 11 bit value representing the logical offset of this fragment in bytes divided by 32. The first fragment must have an offset of zero. The following figure shows how a large IP datagram is fragmented over Frame Relay. In this example, the complete datagram is fragmented into two Frame Relay frames.Bradley, Brown, Malis [Page 15]RFC 1294 Multiprotocol over Frame Relay January 1992 Frame Relay Fragmentation Example +-----------+-----------+ | Q.922 Address | +-----------+-----------+ | Ctrl 0x03 | pad 0x00 | +-----------+-----------+ |NLPID 0x80 | OUI 0x00 | +-----------+-----------+ | OUI 0x80-C2 | +-----------+-----------+ +-----------+-----------+ | pad 0x00 |NLPID 0xCC | | PID 0x00-0D | +-----------+-----------+ +-----------+-----------+ | | | sequence number n | | | +-----------+-----------+ | | |0| RSVD |offset (0) | | | +-----------+-----------+ | | | pad 0x00 |NLPID 0xCC | | | +-----------+-----------+ | | | first m bytes of | | large IP datagram | ... | IP datagram | | | | | | | +-----------+-----------+ | | | FCS | | | +-----------+-----------+ | | | | +-----------+-----------+ | | | Q.922 Address | | | +-----------+-----------+ | | | Ctrl 0x03 | pad 0x00 | +-----------+-----------+ +-----------+-----------+ |NLPID 0x80 | OUI 0x00 | +-----------+-----------+ | OUI 0x80-C2 | +-----------+-----------+ | PID 0x00-0D | +-----------+-----------+ | sequence number n | +-----------+-----------+ |1| RSVD |offset (m/32) | +-----------+-----------+ | remainder of IP | | datagram | +-----------+-----------+ | FCS | +-----------+-----------+ Fragments must be sent in order starting with a zero offset and ending with the final fragment. These fragments must not beBradley, Brown, Malis [Page 16]RFC 1294 Multiprotocol over Frame Relay January 1992 interrupted with other packets or information intended for the same DLC. An end station must be able to re-assemble up to 2K octets and is suggested to support up to 8K octet re-assembly. If at any time during this re-assembly process, a fragment is corrupted or a fragment is missing, the entire message is dropped. The upper layer protocol is responsible for any retransmission in this case. This fragmentation algorithm is not intended to reliably handle all possible failure conditions. As with IP fragmentation, there is a small possibility of reassembly error and delivery of an erroneous packet. Inclusion of a higher layer checksum greatly reduces this risk.10. Address Resolution There are situations in which a Frame Relay station may wish to dynamically resolve a protocol address. Address resolution may be accomplished using the standard Address Resolution Protocol (ARP) [6] encapsulated within a SNAP encoded Frame Relay packet as follows: +-----------------------+-----------------------+ | Q.922 Address | +-----------------------+-----------------------+ | Control (UI) 0x03 | pad(s) 0x00 | +-----------------------+-----------------------+ | NLPID = 0x80 | | SNAP Header +-----------------------+ OUI = 0x00-00-00 + Indicating | | ARP +-----------------------+-----------------------+ | PID = 0x0806 | +-----------------------+-----------------------+ | ARP packet | | . | | . | | . | +-----------------------+-----------------------+Bradley, Brown, Malis [Page 17]RFC 1294 Multiprotocol over Frame Relay January 1992 Where the ARP packet has the following format and values: Data: ar$hrd 16 bits Hardware type ar$pro 16 bits Protocol type ar$hln 8 bits Octet length of hardware address (n) ar$pln 8 bits Octet length of protocol address (m) ar$op 16 bits Operation code (request or reply) ar$sha noctets source hardware address ar$spa moctets source protocol address ar$tha noctets target hardware address ar$tpa moctets target protocol address ar$hrd - assigned to Frame Relay is 15 decimal (0x000F) [7]. ar$pro - see assigned numbers for protocol ID number for the protocol using ARP. (IP is 0x0800). ar$hln - length in bytes of the address field (2, 3, or 4) ar$pln - protocol address length is dependent on the protocol (ar$pro) (for IP ar$pln is 4). ar$op - 1 for request and 2 for reply. ar$sha - Q.922 source hardware address, with C/R, FECN, BECN, and DE set to zero. ar$tha - Q.922 target hardware address, with C/R, FECN, BECN, and DE set to zero. Because DLCIs within most Frame Relay networks have only local significance, an end station will not have a specific DLCI assigned to itself. Therefore, such a station does not have an address to put into the ARP request or reply. Fortunately, the Frame Relay network does provide a method for obtaining the correct DLCIs. The solution proposed for the locally addressed Frame Relay network below will work equally well for a network where DLCIs have global significance. The DLCI carried within the Frame Relay header is modified as it traverses the network. When the packet arrives at its destination, the DLCI has been set to the value that, from the standpoint of the receiving station, corresponds to the sending station. For example, in figure 1 below, if station A were to send a message to station B, it would place DLCI 50 in the Frame Relay header. When station B received this message, however, the DLCI would have been modified by the network and would appear to B as DLCI 70.Bradley, Brown, Malis [Page 18]RFC 1294 Multiprotocol over Frame Relay January 1992 ~~~~~~~~~~~~~~~ ( ) +-----+ ( ) +-----+ | |-50------(--------------------)---------70-| | | A | ( ) | B | | |-60-----(---------+ ) | | +-----+ ( | ) +-----+ ( | ) ( | ) <---Frame Relay ~~~~~~~~~~~~~~~~ network 80 | +-----+ | | | C | | | +-----+ Figure 1 Lines between stations represent data link connections (DLCs). The numbers indicate the local DLCI associated with each connection. DLCI to Q.922 Address Table for Figure 1 DLCI (decimal) Q.922 address (hex) 50 0x0C21 60 0x0CC1 70 0x1061 80 0x1401 If you know about frame relay, you should understand the corrolation between DLCI and Q.922 address. For the uninitiated, the translation between DLCI and Q.922 address is based on a two byte address length using the Q.922 encoding format. The format is: 8 7 6 5 4 3 2 1 +------------------------+---+--+ | DLCI (high order) |c/r|ea| +------------------------+---+--+ | DLCI (lower) |FECN|BECN|DE |EA| +--------------+----+----+---+--+ For ARP and its variants, the FECN, BECN, C/R and DE bits are assumed to be 0. When an ARP message reaches a destination, all hardware addressesBradley, Brown, Malis [Page 19]RFC 1294 Multiprotocol over Frame Relay January 1992 will be invalid. The address found in the frame header will, however, be correct. Though it does violate the purity of layering, Frame Relay may use the address in the header as the sender hardware address. It should also be noted that the target hardware address, in both ARP request and reply, will also be invalid. This should not cause problems since ARP does not rely on these fields and in fact, an implementation may zero fill or ignore the target hardware address field entirely. As an example of how this address replacement scheme may work, refer to figure 1. If station A (protocol address pA) wished to resolve the address of station B (protocol address pB), it would format an ARP request with the following values: ARP request from A ar$op 1 (request) ar$sha unknown ar$spa pA ar$tha undefined ar$tpa pB Because station A will not have a source address associated with it, the source hardware address field is not valid. Therefore, when the ARP packet is received, it must extract the correct address from the Frame Relay header and place it in the source hardware address field. This way, the ARP request from A will become: ARP request from A as modified by B ar$op 1 (request) ar$sha 0x1061 (DLCI 70) from Frame Relay header ar$spa pA ar$tha undefined ar$tpa pB Station B's ARP will then be able to store station A's protocol address and Q.922 address association correctly. Next, station B will form a reply message. Many implementations simply place the source addresses from the ARP request into the target addresses and then fills in the source addresses with its addresses. In this case, the ARP response would be: ARP response from B ar$op 2 (response) ar$sha unknown ar$spa pB ar$tha 0x1061 (DLCI 70) ar$tpa pABradley, Brown, Malis [Page 20]RFC 1294 Multiprotocol over Frame Relay January 1992 Again, the source hardware address is unknown and when the request is received, station A will extract the address from the Frame Relay header and place it in the source hardware address field. Therefore, the response will become: ARP response from B as modified by A ar$op 2 (response) ar$sha 0x0C21 (DLCI 50) ar$spa pB ar$tha 0x1061 (DLCI 70) ar$tpa pA Station A will now correctly recognize station B having protocol address pB associated with Q.922 address 0x0C21 (DLCI 50). Reverse ARP (RARP) [8] will work in exactly the same way. Still using figure 1, if we assume station C is an address server, the following RARP exchanges will occur: RARP request from A RARP request as modified by C ar$op 3 (RARP request) ar$op 3 (RARP request) ar$sha unknown ar$sha 0x1401 (DLCI 80) ar$spa undefined ar$spa undefined ar$tha 0x0CC1 (DLCI 60) ar$tha 0x0CC1 (DLCI 60) ar$tpa pC ar$tpa pC Station C will then look up the protocol address corresponding to Q.922 address 0x1401 (DLCI 80) and send the RARP response. RARP response from C RARP response as modified by A ar$op 4 (RARP response) ar$op 4 (RARP response) ar$sha unknown ar$sha 0x0CC1 (DLCI 60) ar$spa pC ar$spa pC ar$tha 0x1401 (DLCI 80) ar$tha 0x1401 (DLCI 80) ar$tpa pA ar$tpa pA This means that the Frame Relay interface must only intervene in the processing of incoming packets. In the absence of suitable multicast, ARP may still be implemented. To do this, the end station simply sends a copy of the ARP request through each relevant DLC, thereby simulating a broadcast. The use of multicast addresses in a Frame Relay environment is presently under study by Frame Relay providers. At such time that the issues surrounding multicasting are resolved, multicast addressing may become useful in sending ARP requests and other "broadcast" messages.Bradley, Brown, Malis [Page 21]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -