📄 rfc2260.txt
字号:
RFC 2260 Multihoming January 1998 with the enterprise's border routers. The non-direct peering could be maintained with any router within the ISP. Doing this could improve the overall robustness in the presence of failures within the ISP.5.3. Combining the two One could observe that while the approach described in Section 5.2 allows to completely eliminate the routing overhead due to multi- homed enterprises in the "default-free" zone of the Internet, it may result in a suboptimal routing in the presence of link failures. The sub-optimality could be reduced by combining the approach described in Section 5.2 with a slightly modified version of the approach described in Section 5.1. The modification consists of constraining the scope of propagation of additional routes that are advertised by an enterprise border router when the router detects problems with the Internet connectivity through its other border routers. A way to constrain the scope is by using the BGP Community attribute [RFC1997].5.4. Better (more optimal) routing in steady state The approach described in this document assumes that in a steady state an enterprise border router would advertise to a directly connected ISP border router only the reachability to the address prefix that this ISP allocated to the enterprise. As a result, traffic originated by other enterprises connected to that ISP and destined to the parts of the enterprise numbered out of other address prefixes would not enter the enterprise at this border router, resulting in potentially suboptimal paths. To improve the situation the border router may (in steady state) advertise reachability not only to the address prefix that was allocated by the ISP that the router is directly connected to, but to the address prefixes allocated by some other ISPs (directly connected to some other border routers within the enterprise). Distribution of such advertisements should be carefully constrained, or otherwise this may result in significant additional routing information that would need to be maintained in the "default-free" part of the Internet. A way to constrain the distribution of such advertisements is by using the BGP Community attribute [RFC1997].6. Comparison with other approaches CIDR [RFC1518] proposes several possible address allocation strategies for multi-homed enterprises that are connected to multiple ISPs. The following briefly reviews the alternatives being used today, and compares them with the approaches described above.Bates & Rekhter Informational [Page 7]RFC 2260 Multihoming January 19986.1. Solution 1 One possible solution suggested in [RFC1518] is for each multi-homed enterprise to obtain its IP address space independently from the ISPs to which it is attached. This allows each multi-homed enterprise to base its IP assignments on a single prefix, and to thereby summarize the set of all IP addresses reachable within that enterprise via a single prefix. The disadvantage of this approach is that since the IP address for that enterprise has no relationship to the addresses of any particular ISPs, the reachability information advertised by the enterprise is not aggregatable with any, but default route. results in the routing overhead in the "default-free" zone of the Internet of O(N), where N is the total number of multi-homed enterprises across the whole Internet that are connected to multiple ISPs. As a result, this approach can't be viewed as a viable alternative for all, but the enterprises that provide high enough degree of addressing information aggregation. Since by definition the number of such enterprises is likely to be fairly small, this approach isn't viable for most of the multi-homed enterprises connected to multiple ISPs.6.2. Solution 2 Another possible solution suggested in [RFC1518] is to assign each multi-homed enterprise a single address prefix, based on one of its connections to one of its ISPs. Other ISPs to which the multi-homed enterprise is attached maintain a routing table entry for the organization, but are extremely selective in terms of which other ISPs are told of this route and would need to perform "proxy" aggregation. Most of the complexity associated with this approach is due to the need to perform "proxy" aggregation, which in turn requires t addiional inter-ISP coordination and more complex router configuration.7. Discussion The approach described in this document assumes that addresses that an enterprise would use are allocated based on the "address lending" policy. Consequently, whenever an enterprise changes its ISP, the enterprise would need to renumber part of its network that was numbered out of the address block that the ISP allocated to the enterprise. However, these issues are not specific to multihoming and should be considered accepted practice in todays internet. The approach described in this document effectively eliminates any distinction between single-home and multi-homed enterprise with respect to the impact of changing ISPs on renumbering.Bates & Rekhter Informational [Page 8]RFC 2260 Multihoming January 1998 The approach described in this document also requires careful address assignment within an enterprise, as address assignment impacts traffic distribution among multiple connections between an enterprise and its ISPs. Both the issue of address assignment and renumbering could be addressed by the appropriate use of network address translation (NAT). The use of NAT for multi-homed enterprises is the beyond the scope of this document. Use of auto route injection (as described in Section 5.1) increases the number of routers in the default-free zone of the Internet that could be affected by changes in the connectivity of multi-homed enterprises, as compared to the use of provider-independed addresses (as described in Section 6.1). Specifically, with auto route injection when a multi-homed enterprise loses its connectivity through one of its ISPs, the auto injected route has to be propagated to all the routers in the default-free zone of the Internet. In contrast, when an enterprise uses provider-independent addresses, only some (but not all) of the routers in the default-free zone would see changes in routing when the enterprise loses its connectivity through one of its ISPs. To supress excessive routing load due to link flapping the auto injected route has to be advertised until the connectivity via the other connection (that was previously down and that triggered auto route injection) becomes stable. Use of the non-direct EBGP approach (as described in Section 5.2) allows to eliminate route flapping due to multi-homed enterprises in the default-free zone of the Internet. That is the non-direct EBGP approach has better properties with respect to routing stability than the use of provider-independent addresses (as described in Section 6.1).8. Applications to multi-homed ISPs The approach described in this document could be applicable to a small to medium size ISP that is connected to several upstream ISPs. The ISP would acquire blocks of addresses (address prefixes) from its upstream ISPs, and would use these addresses for allocations to its customers. Either auto route injection, or the non-direct EBGP approach, or a combination of both could be used by the ISP when peering with its upstream ISPs. Doing this would provide routability for the customers of such ISP, without advertsely affecting the overall scalability of the Internet routing system.Bates & Rekhter Informational [Page 9]RFC 2260 Multihoming January 19989. Security Considerations Since the non-direct EBGP approach (as described in Section 5.2) requires EBGP sessions between routers that are more than one IP hop from each other, routers that maintain these sessions should use an appropriate authentication mechanism(s) for BGP peer authentication. Security issues related to the IBGP peering, as well as the EBGP peering between routers that are one IP hop from each other are outside the scope of this document.10. Acknowledgments The authors of this document do not make any claims on the originality of the ideas described in this document. Anyone who thought about these ideas before should be given all due credit.11. References [RFC1518] Rekhter, Y., and T. Li, "An Architecture for IP Address Allocation with CIDR", RFC 1518, September 1993. [RFC1771] Rekhter, Y., and T. Li, "A Border Gateway Protocol 4 (BGP-4)", RFC 1771, March 1995. [RFC1773] Hanks, S., Li, T., Farinacci, T., and P. Traina, "Generic Routing Encapsulation over IPv4 networks", RFC 1773, October 1994. [RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot G.J., and E. Lear, "Address Allocation for Private Internets", RFC 1918, February 1996. [RFC1997] Chandra, R., Traina, P., and T. Li, "BGP Communities Attribute", RFC 1997, August 1996. [RFC2008] Rekhter, Y., and T. Li, "Implications of Various Address Allocation Policies for Internet Routing", BCP 7, RFC 2008, October 1996.Bates & Rekhter Informational [Page 10]RFC 2260 Multihoming January 199812. Authors' Addresses Tony Bates Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134 EMail: tbates@cisco.com Yakov Rekhter Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134 EMail: yakov@cisco.comBates & Rekhter Informational [Page 11]RFC 2260 Multihoming January 199813. Full Copyright Statement Copyright (C) The Internet Society (1998). All Rights Reserved. This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English. The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns. This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.Bates & Rekhter Informational [Page 12]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -