📄 rfc1595.txt
字号:
AToM MIB Working Group [Page 6]RFC 1595 SONET/SDH Objects March 19943.3. Use of ifTable for SONET/SDH Paths Only the ifGeneralGroup needs to be supported. ifTable Object Use for SONET/SDH Paths ========================================= ifIndex Interface index. ifDescr SONET/SDH Path ifType sonetPath(50) ifSpeed set to speed of SONET/SDH path (e.g., an STS-1 path has a rate of 50112000 bps.) ifPhysAddress Circuit Identifier or OCTET STRING of zero length. ifAdminStatus Supports read-only access. The desired administrative status of the interface. ifOperStatus This object assumes the value down(2), if the object sonetPathCurrentStatus has any other value than sonetPathNoDefect(1). ifLastChange sysUpTime at the last change in ifOperStatus. ifName Textual name of the interface or an OCTET STRING of zero length. ifLinkUpDownTrapEnable Default value is disabled(2). Just read-only access may be supported. ifHighSpeed Set to rate of SONET/SDH path in Mega-bits per second. ifConnectorPresent Set to false(2).AToM MIB Working Group [Page 7]RFC 1595 SONET/SDH Objects March 19943.4. Use of ifTable for SONET/SDH VTs/VCs Only the ifGeneralGroup needs to be supported. ifTable Object Use for SONET/SDH VTs/VCs =========================================== ifIndex Interface index. ifDescr SONET/SDH VT/VC ifType sonetVT(51) ifSpeed Set to speed of VT/VC (e.g., a VT1.5 has a rate of 1728000 bps.) ifPhysAddress Circuit Identifier or OCTET STRING of zero length. ifAdminStatus Supports read-only access. The desired administrative status of the interface. ifOperStatus This object assumes the value down(2), if the object sonetVTCurrentStatus has any other value than sonetVTNoDefect(1). ifLastChange sysUpTime at the last change in ifOperStatus. ifName Textual name of the interface or an OCTET STRING of zero length. ifLinkUpDownTrapEnable Default value is disabled(2). Just read-only access may be supported. ifHighSpeed Set to rate of VT in Mega-bits per second. ifConnectorPresent Set to false(2).AToM MIB Working Group [Page 8]RFC 1595 SONET/SDH Objects March 19943.5. SONET/SDH Terminology The terminology used in this document to describe error conditions on a SONET circuit as monitored by a SONET system are from the ANSI T1M1.3/93-005R2 [11]. The terminology used in this document to describe error conditions on a SDH circuit as monitored by a SDH system are from the CCITT G.783 [18]. Only the SONET Performance Monitoring terminology is defined in this document. The definitions for SDH Performance Monitoring terms are similar but not identical, and they can be found in [18]. If the definition in this document does not match the definition in the ANSI T1M1.3/93-005R2 draft document, the implementer should follow the definition described in this document. Section Loss Of Frame Failure (Out of Frame Event, Severely Errored Frame Defect) An Out of Frame (OOF) event (or Severely Errored Frame defect) is the occurrence of four contiguous errored frame alignment words. A frame alignment work occupies the A1 and A2 bytes of an STS frame, and is defined in T1.105. The SEF defect is terminated when two contiguous error-free frame words are detected. Any implementation of the frame recovery circuitry which achieves realignment following an OOF within the 250 microsecond (two frames) interval implied by this definition is acceptable. An Loss of Frame (LOF) defect is declared when an OOF/SEF defect persists for a period of 3 milliseconds. The LOF defect is terminated when the incoming signal remains continuously in-frame for a period of 1 ms to 3 ms. An LOF failure is declared when the LOF defect persists for a period of 2.5 +/- 0.5 seconds, except when an LOS defect or failure is present. The LOF failure is cleared when the LOS failure is declared, or when the LOF defect is absent for 10 +/- 0.5 seconds. Loss of Signal The Loss of Signal (LOS) defect is declared when no transitions are detected on the incoming signal (before descrambling). The LOS defect is detected upon observing 2.3 to 100 microseconds of no transitions. The LOS defect is cleared after a 125 microsecond interval (one frame) during which no LOS defect is detected. The LOS failure is declared when the LOS defect persists for a period of 2.5 +/- 0.5 seconds, or if LOS defect isAToM MIB Working Group [Page 9]RFC 1595 SONET/SDH Objects March 1994 present when the criteria for LOF failure declaration have been met. The LOS failure is cleared when the LOS defect is absent for a period of 10 +/- 0.5 seconds. Declaration of LOS failure clears any existing LOF failure. Clearing the LOS failure allows immediate declaration of the LOF failure if conditions warrant. STS-Path Loss of Pointer An Loss of Pointer (LOP) defect is declared when either a valid pointer is not detected in eight consecutive frames, or when eight consecutive frames are detected with the New Data Flag (NDF) set to "1001" without a valid concatenation indicator (see ANSI T1.105). A LOP defect is terminated when either a valid pointer with a normal NDF set to "0110", or a valid concatenation indicator is detected for three contiguous frames. Incoming STS-Path AIS shall not result in the declaration of a LOP defect. A STS-Path LOP failure is declared when the STS-Path LOP defect persists for a period of 2.5 +/- 0.5 seconds. A STS-Path LOP failure is cleared when the STS-Path LOP defect is absent for 10 +/- 0.5 seconds. VT Loss of Pointer A VT LOP defect is declared when either a valid pointer is not detected in eight consecutive VT superframes, or when eight consecutive VT superframes are detected with the NDF set to "1001" without a valid concatenation indicator. A VT LOP defect is terminated when either a valid pointer with a normal NDF set to "0110", or a valid concatenation indicator is detected for three contiguous VT superframes. Incoming VT-Path AIS shall not result in declaring a VT LOP defect. A VT LOP failure is declared when the VT LOP defect persists for 2.5 +/- 0.5 seconds. A VT LOP failure is cleared when the VT LOP defect is absent for 10 +/- 0.5 seconds. Line Alarm Indication Signal A Line Alarm Indication Signal (L-AIS) is defined in ANSI T1.105. The following criteria are specific to the L-AIS defect: -- Line AIS defect is detected as a "111" pattern in bits 6, 7, and 8 of the K2 byte in five consecutive frames.AToM MIB Working Group [Page 10]RFC 1595 SONET/SDH Objects March 1994 -- Line AIS defect is terminated when bits 6, 7, and 8 of the K2 byte do not contain the code "111" for five consecutive frames. A Line AIS failure is declared when the Line AIS defect persists for a period of 20.5 +/- 0.5 seconds. A Line AIS failure is cleared when the Line AIS defect is absent for 10 +/- 0.5 seconds. STS-Path Alarm Indication Signal The STS-Path Alarm Indication Signal (AIS) is defined in ANSI T1.105 as all ones in bytes H1, H2, and H3 as well as all ones in the entire STS SPE. The following criteria are specific to the STS-Path AIS defect: -- STS-Path AIS defect is detected as all ones in bytes H1 and H2 in three contiguous frames. -- The STS-Path AIS defect is terminated when a valid STS Pointer is detected with the NDF set to "1001" (inverted) for one frame, or "0110" (normal) for three contiguous frames. A STS-Path AIS failure is declared when the STS-Path AIS defect persists for 2.5 +/- 0.5 seconds. A STS-Path AIS failure is cleared when the STS-Path AIS defect is absent for 10 +/- 0.5 seconds. VT-Path Alarm Indication Signal The VT-Path Alarm Indication Signal (AIS) is only applicable for VTs in the floating mode of operation. VT-Path AIS is used to alert the downstream VT Path Terminating Entity (PTE) of an upstream failure. Upon detection of a failure, Line AIS, or STS-Path AIS, an STS PTE will generate downstream VT-Path AIS if the STS Synchronous Payload Envelope (SPE) is carrying floating VTs. VT-Path AIS is specified in ANSI T1.105 as all ones in bytes V1, V2, V3, and V4, as well as all ones in the entire VT SPE. The following criteria are specific to VT-Path AIS defect: -- VT-Path AIS defect is detected by a VT PTE as all ones in bytes V1 and V2 in three contiguous VT superframes. -- VT-Path AIS defect is terminated when valid VT pointer with a valid VT size is detected with the NDF set to "1001" (inverted) for one VT superframe, or "0110"AToM MIB Working Group [Page 11]RFC 1595 SONET/SDH Objects March 1994 (normal) for three contiguous VT superframes are detected. A VT-Path AIS failure is declared when the VT-Path AIS defect persists for 2.5 +/- 0.5 seconds. A VT-Path AIS failure is cleared when the VT-Path AIS defect is absent for 10 +/- 0.5 seconds. Line Remote Defect Indication Line Remote Defect Indication (RDI) (aka Line FERF) signal is the occurrence of a "110" pattern in bit positions 6, 7, and 8 of the K2 byte in STS-1 #1 of the STS-N signal. Line RDI is defined in ANSI T1.105. The following criteria are specific to Line RDI defect: -- Line RDI defect is a "110" code in bits 6, 7, and 8 of the K2 byte of in STS-1 #1 in five consecutive frames. -- Line RDI defect is terminated when any code other than "110" is detected in bits 6, 7, and 8 of the K2 byte in five consecutive frames. A Line Remote Failure Indication (RFI) failure is declared when the incoming Line RDI defects lasts for 2.5 +/- 0.5 seconds. The Line RFI failure is cleared when no Line RDI defects are detected for 10 +/- 0.5 seconds. STS-Path Remote Defect Indication STS-Path RDI (aka STS-Path FERF) signal shall be generated within 100 milliseconds by the STS PTE upon detection of an AIS or LOP defect. Transmission of the STS-Path RDI signal shall cease within 100 milliseconds when the STS PTE no longer detects STS-Path AIS or STS- Path LOP defect. The STS-Path RDI shall accurately report the presence or absence of STS-Path AIS or STS- Path LOP defects. STS-Path RDI defect is defined in ANSI T1.105. The following requirements are specific to the STS-Path RDI defect: -- STS-Path RDI is detected by all STS PTEs. STS-Path RDI is detected by the upstream STS PTE as a "1" in bit five of the Path Status byte (G1) for five contiguous frames. -- Removal of STS-Path Remote Defect Indication is detected by a "0" in bit 5 of the G1 byte in five contiguous frames.AToM MIB Working Group [Page 12]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -