📄 rfc2722.txt
字号:
Network Working Group N. BrownleeRequest for Comments: 2722 The University of AucklandObsoletes: 2063 C. MillsCategory: Informational GTE Laboratories, Inc G. Ruth GTE Internetworking October 1999 Traffic Flow Measurement: ArchitectureStatus of this Memo This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.Copyright Notice Copyright (C) The Internet Society (1999). All Rights Reserved.Abstract This document provides a general framework for describing network traffic flows, presents an architecture for traffic flow measurement and reporting, discusses how this relates to an overall network traffic flow architecture and indicates how it can be used within the Internet.Table of Contents 1 Statement of Purpose and Scope 3 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 3 2 Traffic Flow Measurement Architecture 5 2.1 Meters and Traffic Flows . . . . . . . . . . . . . . . . . 5 2.2 Interaction Between METER and METER READER . . . . . . . . 7 2.3 Interaction Between MANAGER and METER . . . . . . . . . . 7 2.4 Interaction Between MANAGER and METER READER . . . . . . . 8 2.5 Multiple METERs or METER READERs . . . . . . . . . . . . . 9 2.6 Interaction Between MANAGERs (MANAGER - MANAGER) . . . . . 10 2.7 METER READERs and APPLICATIONs . . . . . . . . . . . . . . 10 3 Traffic Flows and Reporting Granularity 10 3.1 Flows and their Attributes . . . . . . . . . . . . . . . . 10 3.2 Granularity of Flow Measurements . . . . . . . . . . . . . 13 3.3 Rolling Counters, Timestamps, Report-in-One-Bucket-Only . 15Brownlee, et al. Informational [Page 1]RFC 2722 Traffic Flow Measurement: Architecture October 1999 4 Meters 17 4.1 Meter Structure . . . . . . . . . . . . . . . . . . . . . 17 4.2 Flow Table . . . . . . . . . . . . . . . . . . . . . . . . 19 4.3 Packet Handling, Packet Matching . . . . . . . . . . . . . 20 4.4 Rules and Rule Sets . . . . . . . . . . . . . . . . . . . 23 4.5 Maintaining the Flow Table . . . . . . . . . . . . . . . . 28 4.6 Handling Increasing Traffic Levels . . . . . . . . . . . . 29 5 Meter Readers 30 5.1 Identifying Flows in Flow Records . . . . . . . . . . . . 30 5.2 Usage Records, Flow Data Files . . . . . . . . . . . . . . 30 5.3 Meter to Meter Reader: Usage Record Transmission . . . . 31 6 Managers 32 6.1 Between Manager and Meter: Control Functions . . . . . . 32 6.2 Between Manager and Meter Reader: Control Functions . . . 33 6.3 Exception Conditions . . . . . . . . . . . . . . . . . . . 35 6.4 Standard Rule Sets . . . . . . . . . . . . . . . . . . . . 36 7 Security Considerations 36 7.1 Threat Analysis . . . . . . . . . . . . . . . . . . . . . 36 7.2 Countermeasures . . . . . . . . . . . . . . . . . . . . . 37 8 IANA Considerations 39 8.1 PME Opcodes . . . . . . . . . . . . . . . . . . . . . . . 39 8.2 RTFM Attributes . . . . . . . . . . . . . . . . . . . . . 39 9 APPENDICES 41 Appendix A: Network Characterisation . . . . . . . . . . . . . 41 Appendix B: Recommended Traffic Flow Measurement Capabilities . 42 Appendix C: List of Defined Flow Attributes . . . . . . . . . . 43 Appendix D: List of Meter Control Variables . . . . . . . . . . 44 Appendix E: Changes Introduced Since RFC 2063 . . . . . . . . . 45 10 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . 45 11 References . . . . . . . . . . . . . . . . . . . . . . . . . . 46 12 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . 47 13 Full Copyright Statement . . . . . . . . . . . . . . . . . . . 48Brownlee, et al. Informational [Page 2]RFC 2722 Traffic Flow Measurement: Architecture October 19991 Statement of Purpose and Scope1.1 Introduction This document describes an architecture for traffic flow measurement and reporting for data networks which has the following characteristics: - The traffic flow model can be consistently applied to any protocol, using address attributes in any combination at the 'adjacent' (see below), network and transport layers of the networking stack. - Traffic flow attributes are defined in such a way that they are valid for multiple networking protocol stacks, and that traffic flow measurement implementations are useful in multi-protocol environments. - Users may specify their traffic flow measurement requirements by writing 'rule sets', allowing them to collect the flow data they need while ignoring other traffic. - The data reduction effort to produce requested traffic flow information is placed as near as possible to the network measurement point. This minimises the volume of data to be obtained (and transmitted across the network for storage), and reduces the amount of processing required in traffic flow analysis applications. 'Adjacent' (as used above) is a layer-neutral term for the next layer down in a particular instantiation of protocol layering. Although 'adjacent' will usually imply the link layer (MAC addresses), it does not implicitly advocate or dismiss any particular form of tunnelling or layering. The architecture specifies common metrics for measuring traffic flows. By using the same metrics, traffic flow data can be exchanged and compared across multiple platforms. Such data is useful for: - Understanding the behaviour of existing networks, - Planning for network development and expansion, - Quantification of network performance, - Verifying the quality of network service, and - Attribution of network usage to users.Brownlee, et al. Informational [Page 3]RFC 2722 Traffic Flow Measurement: Architecture October 1999 The traffic flow measurement architecture is deliberately structured using address attributes which are defined in a consistent way at the Adjacent, Network and Transport layers of the networking stack, allowing specific implementations of the architecture to be used effectively in multi-protocol environments. Within this document the term 'usage data' is used as a generic term for the data obtained using the traffic flow measurement architecture. In principle one might define address attributes for higher layers, but it would be very difficult to do this in a general way. However, if an RTFM traffic meter were implemented within an application server (where it had direct access to application-specific usage information), it would be possible to use the rest of the RTFM architecture to collect application-specific information. Use of the same model for both network- and application-level measurement in this way could simplify the development of generic analysis applications which process and/or correlate both traffic and usage information. Experimental work in this area is described in the RTFM 'New Attributes' document [RTFM-NEW]. This document is not a protocol specification. It specifies and structures the information that a traffic flow measurement system needs to collect, describes requirements that such a system must meet, and outlines tradeoffs which may be made by an implementor. For performance reasons, it may be desirable to use traffic information gathered through traffic flow measurement in lieu of network statistics obtained in other ways. Although the quantification of network performance is not the primary purpose of this architecture, the measured traffic flow data may be used as an indication of network performance. A cost recovery structure decides "who pays for what." The major issue here is how to construct a tariff (who gets billed, how much, for which things, based on what information, etc). Tariff issues include fairness, predictability (how well can subscribers forecast their network charges), practicality (of gathering the data and administering the tariff), incentives (e.g. encouraging off-peak use), and cost recovery goals (100% recovery, subsidisation, profit making). Issues such as these are not covered here. Background information explaining why this approach was selected is provided by the 'Internet Accounting Background' RFC [ACT-BKG].Brownlee, et al. Informational [Page 4]RFC 2722 Traffic Flow Measurement: Architecture October 19992 Traffic Flow Measurement Architecture A traffic flow measurement system is used by Network Operations personnel to aid in managing and developing a network. It provides a tool for measuring and understanding the network's traffic flows. This information is useful for many purposes, as mentioned in section 1 (above). The following sections outline a model for traffic flow measurement, which draws from working drafts of the OSI accounting model [OSI- ACT].2.1 Meters and Traffic Flows At the heart of the traffic measurement model are network entities called traffic METERS. Meters observe packets as they pass by a single point on their way through the network and classify them into certain groups. For each such group a meter will accumulate certain attributes, for example the numbers of packets and bytes observed for the group. These METERED TRAFFIC GROUPS may correspond to a user, a host system, a network, a group of networks, a particular transport address (e.g. an IP port number), any combination of the above, etc, depending on the meter's configuration. We assume that routers or traffic monitors throughout a network are instrumented with meters to measure traffic. Issues surrounding the choice of meter placement are discussed in the 'Internet Accounting Background' RFC [ACT-BKG]. An important aspect of meters is that they provide a way of succinctly aggregating traffic information. For the purpose of traffic flow measurement we define the concept of a TRAFFIC FLOW, which is like an artificial logical equivalent to a call or connection. A flow is a portion of traffic, delimited by a start and stop time, that belongs to one of the metered traffic groups mentioned above. Attribute values (source/destination addresses, packet counts, byte counts, etc.) associated with a flow are aggregate quantities reflecting events which take place in the DURATION between the start and stop times. The start time of a flow is fixed for a given flow; the stop time may increase with the age of the flow. For connectionless network protocols such as IP there is by definition no way to tell whether a packet with a particular source/destination combination is part of a stream of packets or not - each packet is completely independent. A traffic meter has, as part of its configuration, a set of 'rules' which specify the flows of interest, in terms of the values of their attributes. It derives attribute values from each observed packet, and uses these to decideBrownlee, et al. Informational [Page 5]RFC 2722 Traffic Flow Measurement: Architecture October 1999 which flow they belong to. Classifying packets into 'flows' in this way provides an economical and practical way to measure network traffic and subdivide it into well-defined groups. Usage information which is not derivable from traffic flows may also be of interest. For example, an application may wish to record accesses to various different information resources or a host may wish to record the username (subscriber id) for a particular network session. Provision is made in the traffic flow architecture to do
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -