📄 rfc1233.txt
字号:
Network Working Group T. CoxRequest for Comments: 1233 K. Tesink Bell Communications Research Editors May 1991 Definitions of Managed Objects for the DS3 Interface TypeStatus of this Memo This memo defines objects for managing DS3 Interface objects for use with the SNMP protocol. This memo is a product of the SNMP and Transmission MIB Working Group of the Internet Engineering Task Force (IETF). This RFC specifies an IAB standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "IAB Official Protocol Standards" for the standardization state and status of this protocol. Distribution of this memo is unlimited.Table of Contents 1. Abstract .............................................. 1 2. The Network Management Framework....................... 2 3. Objects ............................................... 2 3.1 Format of Definitions ................................ 3 4. Overview .............................................. 3 4.1 Binding between Interfaces and CSUs .................. 3 4.2 Objectives of this MIB Module ........................ 3 4.3 DS3 Terminology ...................................... 3 5. Object Definitions .................................... 5 5.1 The DS3 Configuration Group .......................... 6 5.2 The DS3 Interval Group ............................... 11 5.3 The DS3 Current Group ................................ 14 5.4 The DS3 Total Group .................................. 17 6. Acknowledgments ....................................... 20 7. References ............................................ 22 8. Security Considerations................................ 23 9. Authors' Addresses..................................... 231. Abstract This memo defines an experimental portion of the Management Information Base (MIB) for use with network management protocols in TCP/IP-based internets. In particular, this memo defines MIB objects for representing DS3 physical interfaces. Implementors should consult in addition to this memo the companion document thatSNMP & Transmission MIB Working Groups [Page 1]RFC 1233 DS3 Interface Objects May 1991 describes that DS1 managed objects.2. The Network Management Framework The Internet-standard Network Management Framework consists of three components. They are: RFC 1155 which defines the SMI, the mechanisms used for describing and naming objects for the purpose of management. RFC 1212 defines a more concise description mechanism, which is wholly consistent with the SMI. RFC 1156 which defines MIB-I, the core set of managed objects for the Internet suite of protocols. RFC 1213, defines MIB-II, an evolution of MIB-I based on implementation experience and new operational requirements. RFC 1157 which defines the SNMP, the protocol used for network access to managed objects. The Framework permits new objects to be defined for the purpose of experimentation and evaluation.3. Objects Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. Objects in the MIB are defined using the subset of Abstract Syntax Notation One (ASN.1) [7] defined in the SMI. In particular, each object has a name, a syntax, and an encoding. The name is an object identifier, an administratively assigned name, which specifies an object type. The object type together with an object instance serves to uniquely identify a specific instantiation of the object. For human convenience, we often use a textual string, termed the OBJECT DESCRIPTOR, to also refer to the object type. The syntax of an object type defines the abstract data structure corresponding to that object type. The ASN.1 language is used for this purpose. However, the SMI [3] purposely restricts the ASN.1 constructs which may be used. These restrictions are explicitly made for simplicity. The encoding of an object type is simply how that object type is represented using the object type's syntax. Implicitly tied to the notion of an object type's syntax and encoding is how the object type is represented when being transmitted on the network. The SMI specifies the use of the basic encoding rules of ASN.1 [8], subject to the additional requirements imposed by the SNMP.SNMP & Transmission MIB Working Groups [Page 2]RFC 1233 DS3 Interface Objects May 19913.1. Format of Definitions Section 5 contains contains the specification of all object types contained in this MIB module. The object types are defined using the conventions defined in the SMI, as amended by the extensions specified in [13].4. Overview These objects are used when the particular media being used to realize an interface is a DS3 interface. At present, this applies to these values of the ifType variable in the Internet-standard MIB: ds3 (30) The definitions contained herein are based on the DS3 specifications in ANSI T1.102-1987, ANSI T1.107-1988, and ANSI T1.404-1989 [9,10,11].4.1. Binding between Interfaces and CSUs Each agent which resides on a host which uses DS3 interfaces is required to assign a small, positive integer uniquely to each CSU. This is known as the "CSUIndex", and is used to distinguish between different CSUs attached to a node. The CSUIndex is also used as the "key" when accessing tabular information about DS3 interfaces. The ds3Index column of the DS3 Configuration table relates each CSU to its corresponding interface in the Internet-standard MIB.4.2. Objectives of this MIB Module There are numerous things that could be included in a MIB for DS3 signals: the management of multiplexors, CSUs, DSUs, and the like. The intent of this document is to facilitate the common management of CSUs, both in-chassis and external via proxy. As such, a design decision was made up front to very closely align the MIB with the set of objects that can generally be read from CSUs that are currently deployed.4.3. DS3 Terminology The terminology used in this document to describe error conditions on a DS3 circuit as monitored by a DS3 CSU are from the ANSI T1M1.3/90 draft standard [12]. Out of Frame (OOF) event An OOF event is detected when any three or more errors inSNMP & Transmission MIB Working Groups [Page 3]RFC 1233 DS3 Interface Objects May 1991 sixteen or fewer consecutive F-bits occur within a DS3 M-frame. An OOF event is cleared when reframe occurs. Loss of Signal (LOS) This state is declared upon observing 175 +/- 75 contiguous pulse positions with no pulses of either positive or negative polarity. Coding Violation (CV) For all DS3 applications, a coding violation is a P-bit Parity Error event. A P-bit Parity Error event is the occurrence of a received P-bit code on the DS3 M-frame that is not identical to the corresponding locally- calculated code. For C-Bit Parity applications, it is also the occurrence of a received CP-Bit parity violation. For SYNTRAN applications, it is also the occurrence of a received CRC-9 code that is not identical to the corresponding locally calculated code. Bipolar Violation (BPV) A bipolar violation, for B3ZS-coded signals, is the occurrence of a received bipolar violation that is not part of a zero-substitution code. For B3ZS-coded signals, a bipolar violation may also include other error patterns such as: three or more consecutive zeros and incorrect parity. Errored Seconds (ES) An ES is a second with one or more Coding Violation OR one or more Out of Frame events OR an AIS. Severely Errored Seconds (SES) A SES is a second with 44 or more Coding Violations OR one or more Out of Frame events OR an AIS. Severely Errored Framing Seconds (SEFS) A SEFS is a second with one or more Out of Frame events. Unavailable Seconds (UAS) UAS are calculated by counting the number of seconds that the CSU is in the Unavailable signal state (i.e., declared a Red Alarm or a Yellow Alarm), including the initial 10 seconds to enter the state but not including the 10 seconds to exit the state. Note that any second that may be counted as an UAS may not be counted as an ES or a SES. Since the 10 SESs that comprise the transition from the available to unavailableSNMP & Transmission MIB Working Groups [Page 4]RFC 1233 DS3 Interface Objects May 1991 signal state may also be counted as ESs and SESs previous to entering the state, these three counters are adjusted so that any second counted during this transition is then subtracted. The 10 seconds in the transition from unavailable to available may be counted as ESs. A special case exists when the 10 or more second period crosses the 900 second statistics window boundary, as the foregoing description implies that the SES and UAS counters must be adjusted when the Unavailable Signal State is entered. Clearly, successive GETs of the affected ds3IntervalSES and ds3IntervalUAS objects will return differing values if the first GET occurs during the first few seconds of the window. This is viewed as an unavoidable side-effect of selecting the presently defined managed objects as a basis for this memo. Yellow Alarm The Yellow Alarm is declared after detecting the Yellow Signal. See ANSI T1.107-1989 [10]. Red Alarm The Red Alarm is declared after detecting a Loss of Signal, a Loss of Frame (a persistent OOF event), or an Alarm Indication Signal, see [10] for at least 2-10 seconds. The Red Alarm is cleared at the onset of 10 consecutive seconds with no SES. Circuit Identifier This is a character string specified by the circuit vendor, and is useful when communicating with the vendor during the troubleshooting process.5. Object Definitions RFC1233-MIB DEFINITIONS ::= BEGIN IMPORTS experimental, Counter FROM RFC1155-SMI DisplayString FROM RFC1158-MIB OBJECT-TYPE FROM RFC-1212; -- This MIB module uses the extended OBJECT-TYPE macro -- as defined in [13].SNMP & Transmission MIB Working Groups [Page 5]RFC 1233 DS3 Interface Objects May 1991 -- this is the MIB module for the DS3 objects ds3 OBJECT IDENTIFIER ::= { experimental 15 } -- the DS3 Configuration group -- Although the objects in this group are read-only, at -- the agent's discretion they may be made read-write -- so that the management station, when appropriately -- authorized, may change the behavior of the CSU, -- e.g., to place the device into a loopback state. -- Implementation of this group is mandatory for all -- systems that attach to a DS3 Interface. ds3ConfigTable OBJECT-TYPE SYNTAX SEQUENCE OF DS3ConfigEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "The DS3 Configuration table." ::= { ds3 1 } ds3ConfigEntry OBJECT-TYPE SYNTAX DS3ConfigEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "An entry in the DS3 Configuration table." INDEX { ds3CSUIndex } ::= { ds3ConfigTable 1 } DS3ConfigEntry ::= SEQUENCE { ds3CSUIndex INTEGER, ds3Index
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -