📄 rfc2067.txt
字号:
+------+-------------------------+------+ / \ / \ / \ / \ / \ +-------+ +-------+ +-------+ +-------+ |I-field| |Packet | |Packet | |Packet | +-------+ +-------+ +-------+ +-------+ / \ / \ / \ / \ / \ / \ / \ +-----+ +-----+ +-----+ |Burst| |Burst|...|Burst| +-----+ +-----+ +-----+ HIPPI Logical Framing Hierarchy The Source asserts PACKET for the duration of a Packet transmission, deasserting it to indicate the end of a Packet. A sequence of Bursts comprise a Packet. To send a burst, a Source asserts the BURST signal for 256 clock periods, during which it places 256 words of data on the DATA lines. The first or last Burst of a Packet may be less than 256 clock periods, allowing the transmission of any integral number of 32 or 64 bit words in a Packet.Renwick Standards Track [Page 24]RFC 2067 IP over HIPPI January 1997 The READY signal is a pulse four or more clock periods long. Each pulse signals the Source that the Destination can receive one Burst. The Destination need not wait for a burst before sending another READY if it has burst buffers available; up to 63 unanswered READYs may be sent, allowing HIPPI to operate at full speed over distances of many kilometers. If a Source must wait for flow control, it inserts idle periods between Bursts. +------------------------------------------------+ REQUEST---+ +---- +--------------------------------------------+ CONNECT---------+ +-- +---------------------------------------+ PACKET-------------+ +---- +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ READY------------+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +-- +-------+ +-------+ +-------+ +-----+ BURST--------------+ +-+ +-+ +-+ +-------- DATA------I-field----DATA------DATA------DATA-----DATA---------- HIPPI Signal Timing DiagramSerial HIPPI There is no ANSI standard for HIPPI other than the parallel copper cable version. However an implementors' agreement exists, specifying a serial protocol to extend HIPPI signals on optical fiber or coaxial copper cable. Serial links may be used interchangeably with parallel links to overcome HIPPI distance limitations; they are transparent to the Source and Destination, except for the possibility of longer propagation delays.Renwick Standards Track [Page 25]RFC 2067 IP over HIPPI January 1997I-Field and Switch Control The REQUEST, CONNECT and I-field features of HIPPI-PH were designed for the control of switches as described in HIPPI-SC. A switch is a hub with a number of input and output HIPPI ports. HIPPI Sources are cabled to switch input ports, and switch output ports are cabled to HIPPI Destinations. When a HIPPI Source requests a connection, the switch interprets the I-field to select an output port and electrically connects the HIPPI Source to the HIPPI Destination on that port. Once connected, the switch does not interact with the HIPPIs in any way until REQUEST or CONNECT is deasserted, at which time it breaks the physical connection and deasserts its output signals to both sides. Some existing switch implementations can switch connections in less than one microsecond. There is the potential for as many simultaneous connections, each transferring data at HIPPI speeds, as there are input or output ports on the switch. A switch offers much greater total throughput capacity than broadcast or ring media. 31 28 26 23 11 0 +-+---+-+-+---+-+-----------------------+-----------------------+ |L| |W|D|PS |C| Source Address | Destination Address | +-+---+-+-+---+-+-----------------------+-----------------------+ HIPPI-SC I-field Format (Logical Address Mode) L = Locally defined (1 => entire I-field is locally defined) W = Width (1 => 64 bit connection) D = Direction (1 => swap Source and Destination Address) PS = Path Selection (01 => Logical Address Mode) C = Camp-on (1 => wait until Destination is free) HIPPI-SC defines I-field formats for two different addressing modes. The first, called Source Routing, encodes a string of port numbers in the lower 24 bits. This string specifies a route over a number of switches. A Destination's address may differ from one Source to another if multiple switches are used. The second format, called Logical Address Mode, defines two 12 bit fields, Source Address and Destination Address. A Destination's 12 bit Switch Address is the same for all Sources. Switches commonly have address lookup tables to map 12 bit logical addresses to physical ports. This mode is used for networking.Renwick Standards Track [Page 26]RFC 2067 IP over HIPPI January 1997Control fields in the I-field are: L The "Locally Defined" bit, when set, indicates that the I-field is not in the standard format. The meaning of bits 30-0 are locally defined. W The Width bit, when set, requests a 64 bit connection through the switch. It is meaningless if Cable B is not installed at the Source. If W is set and either the Source or the requested Destination has no Cable B to the switch, the switch rejects the connection. Otherwise the switch connects both Cable A and Cable B if W is set, or Cable A only if W is clear. This feature is useful if both Source and Destination implementations can selectively disable or enable Cable B on each new connection. D The Direction bit, when set, reverses the sense of the Source Address and Destination Address fields. In other words, D=1 means that the Source Address is in bits 0-11 and the Destination Address is in bits 12-23. This bit was defined to give devices a simple way to route return messages. It is not useful for LAN operations. PS The Path Selection field determines whether the I-field contains Source Route or Address information, and in Logical Address mode, whether the switch may select from multiple possible routes to the destination. The value "01" selects Logical Address mode and fixed routes. C The Camp-on bit requests the switch not to reject the connection if the selected Destination is busy (connected to another Source) but wait and make the connection when the Destination is free.15 Appendix B -- How to Build a Practical HIPPI LAN "IP on HIPPI" describes the network host's view of a HIPPI local area network without providing much information on the architecture of the network itself. Here we describe a network constructed from available HIPPI components, having the following characteristics: 1. A tree structure with a central HIPPI-SC compliant hub and optional satellite switches 2. Each satellite is connected to the hub by just one bidirectional HIPPI link.Renwick Standards Track [Page 27]RFC 2067 IP over HIPPI January 1997 3. Serial HIPPI or transparent fiber optic HIPPI extender devices may be used in any link. 4. Some satellites may be a particular switch product which is not HIPPI-SC compliant. 5. Host systems are attached either directly to the hub or to satellites, by single bidirectional links in which both HIPPI cables go to the same numbered switch port.Switch Address Management Switch addresses use a flat address space. The 12-bit address is subdivided into 6 bits of switch number and 6 bits of port number. 11 5 0 +-----------------------+-----------------------+ | Switch Number | Port Number | +-----------------------+-----------------------+Logical Address Construction Switches may be numbered arbitrarily. A given host's address consists of the number of the switch it is directly attached to and the physical port number on that switch to which its input channel is attached. In the singly-connected tree structure, there is exactly one path between any pair of hosts. Since each satellite must be connected directly to the hub, the maximum length of this path is three hops, and the minimum length is one. Each HIPPI-SC compliant switch is programmed to map each of the host switch addresses to the appropriate output port: either the port to which the host is directly attached or a port that is linked to another switch in the path to it.Special Treatment of Nonstandard Switches There is one commercially available switch that was designed before the drafting of HIPPI-SC and is not fully compliant. It is in common use, so it is worth making some special provisions to allow its use in a HIPPI LAN. This switch supports only the Source Route mode of addressing with a four bit right shift that can be disabled by a hardware switch on each input port. Addresses cannot be mapped. The switch does not support the "W", "D", or "PS" fields of the I-field; it ignores their contents. Use of this switch as a satellite will require a slight deviation from normal I-field usage by the hosts that are directly attachedRenwick Standards Track [Page 28]RFC 2067 IP over HIPPI January 1997 to it. Hosts attached to standard switches are not affected. For a destination connected to a non compliant satellite, the satellite uses only the least significant four bits of the I-field as the address. Since the address contains the destination's physical port number in the least significant bits, its port will be selected. Nonstandard switches should be set to disable I- field shifting at the input from the hub, so that the destination host will see its correct switch address in the I-field when performing self-address discovery. I-field shifting must be enabled on the satellite for each input port to which a host is attached. Hosts attached to nonstandard satellites must deviate from the normal I-field usage when connecting to hosts on another switch. It is suggested that all host implementations have this capability as long as the nonstandard switches remain in use. The host must know, by some manual configuration method, that it is connected to a nonstandard switch, and it must have its "link port" number; that is, the number of the port on the satellite that is connected to the hub. The normal I-field format for a 32-bit connection, per the document, is this: 31 26 23 11 0 +---------+---+-+-----------------------+-----------------------+ |0 0 0 0 0|x 1|C| Unused | Destination Address | +---------+---+-+-----------------------+-----------------------+ The special I-field format is: 31 26 24 15 4 3 0 +---------+---+-+---------------+-----------------------+-------+ |0 0 0 0 0|x 1|C| Unused | Destination Address | Link | +---------+---+-+---------------+-----------------------+-------+ This I-field is altered by shifting the lower 24 bits left by four and adding the link port number. Camp-on is optional, and the PS field is set to 01 or 11 (the host's option) as if the switch supported logical address mode. All other I-field bits are set to zero. When the host requests a connection with this I-field, the switch selects a connection through the link port to the hub, and shifts the lower 24 bits of the I-field right by four bits. The link port number is discarded and the I-field passed through to t
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -