📄 rfc1335.txt
字号:
schemes, however, do not need to be consider as mutually exclusive. The DNA scheme has several advantages: * The DNA scheme takes an evolutionary approach towards the changes. Different networks can individually choose to adopt the scheme at any time only when necessary. There is no need for global coordination between different networks for their deployment. The effects of the deployment are confined to the network in which the scheme is being implemented, and are invisible to exterior routing algorithms and external networks. * With the DNA scheme, it is possible for a medium size organization to use a Class C network number with 254 external addresses. The scheme allows the current Internet to expand to over 2 million networks and each network to have more than 16 million hosts. This will allow considerable time for a long-term solution to be developed and fully tested. * The DNA scheme requires modifications to the host software. However, the modifications are needed only in those networks which adopt the DNA scheme. Since all existing Class A and B networks usually have sufficient external addresses for all their machines, they do not need to adopt the DNA scheme, and thereforeWang & Crowcroft [Page 4]RFC 1335 Two-Tier Address Structure for the Internet May 1992 need no modifications at all to their software. The networks which need to use the DNA scheme are those new networks which are set up after the Class A and B numbers run out and have to use a Class C number. * The DNA scheme makes it possible to develop to a new addressing scheme without expanding the 32-bit address length to 64-bit. With the two-tier address structure, the current 32-bit space can accommodate over 4 billion hosts in the global Internet and 100 million hosts in each individual network. When we move to a classless multi-hierarchic addressing scheme, the use of external addresses can be more efficient and less wasteful and the 32-bit space can be adequate for the external addresses. * When a new addressing scheme has been developed, all current Internet addresses have to be changed. The DNA scheme will make such a undertaking much easier and smoother, since only the EASS servers and those have permanent external addresses will be affected, and communications within the network will not be interrupted.The Modifications The major modifications to the host software is in the network interface code. The DNA scheme requires each machine to have at least two addresses. But most of the host software currently does not allow us to bind two addresses to one physical interface. This problem can be solved by using two network interfaces on each machine. But this option is too expensive. Note the two interfaces are actually connected to the same physical network. Therefore, if we modify the interface code to allow two logical interfaces to be mapped onto one single physical interface, the machine can then use both the external address and the internal address with one physical interface as if it has two physical interfaces. In effect, two logical IP networks operate over the same physical network. The DNA scheme also has implications to the DNS service. Many machines will have two entries in the local name server. The DNS server must examine the source address of the request and decide which entry to use. If the source address matches the well-known internal network number, it passes the internal address of the domain name. Otherwise, the name server passes the external address. An EASS server is required to manage the sharing of the external addresses, i.e., to allocate and de-allocate external addresses to the machines which do not have permanent external addresses. This service can be provided by using the "Dynamic Host Configuration Protocol (DHCP)" [6].Wang & Crowcroft [Page 5]RFC 1335 Two-Tier Address Structure for the Internet May 1992 Many hosts do an inverse lookup of incoming connections. Therefore, it is desirable the entry in the DNS server be updated whenever a new external address is allocated. This will also allow an machine which currently has a temporary external address to be called by other machines. The updating of the entry in the DNS server can be done more easily if the EASS server and DNS server are co-located.Acknowledgements We would like to thank J. K. Reynolds for the network statistics, and V. Cerf, C. Topolcic, K. McCloghrie, R. Ullmann and K. Carlberg for their useful comments and discussion.References [1] Chiappa, N., "The IP Addressing Issue", work in progress, October 1990. [2] Clark, D., Chapin, L., Cerf, V., Braden, R., and R. Hobby, "Towards the Future Architecture", RFC 1287, MIT, BBN, CNRI, ISI, UC Davis, December 1991. [3] Solensky, F., and F. Kastenholz, "A Revision to IP Address Classifications", work in progress, March 1992. [4] Fuller, V., Li, T., Yu, J., and K. Varadhan, "Supernetting: an Address Assignment and Aggregation Strategy", work in progress, March 1992. [5] Tsuchiya, P., "The IP Network Address Translator", work in progress, March 1991. [6] Droms, R., "Dynamic Host Configuration Protocol", work in progress, March 1992.Wang & Crowcroft [Page 6]RFC 1335 Two-Tier Address Structure for the Internet May 1992Security Considerations Security issues are not discussed in this memo.Authors' Addresses Zheng Wang Dept. of Computer Science University College London London WC1E 6BT, UK EMail: z.wang@cs.ucl.ac.uk Jon Crowcroft Dept. of Computer Science University College London London WC1E 6BT, UK EMail: j.crowcroft@cs.ucl.ac.ukWang & Crowcroft [Page 7]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -