📄 rfc1490.txt
字号:
Network Working Group T. BradleyRequest for Comments: 1490 Wellfleet Communications, Inc.Obsoletes: 1294 C. Brown Wellfleet Communications, Inc. A. Malis Ascom Timeplex, Inc. July 1993 Multiprotocol Interconnect over Frame RelayStatus of this Memo This RFC specifies an IAB standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "IAB Official Protocol Standards" for the standardization state and status of this protocol. Distribution of this memo is unlimited.Abstract This memo describes an encapsulation method for carrying network interconnect traffic over a Frame Relay backbone. It covers aspects of both Bridging and Routing. Additionally, it describes a simple fragmentation procedure for carrying large frames over a frame relay network with a smaller MTU. Systems with the ability to transfer both the encapsulation method described in this document, and others must have a priori knowledge of which virtual circuits will carry which encapsulation method and this encapsulation must only be used over virtual circuits that have been explicitly configured for its use.Acknowledgements Comments and contributions from many sources, especially those from Ray Samora of Proteon, Ken Rehbehn of Netrix Corporation, Fred Baker and Charles Carvalho of Advanced Computer Communications and Mostafa Sherif of AT&T have been incorporated into this document. Special thanks to Dory Leifer of University of Michigan for his contributions to the resolution of fragmentation issues and Floyd Backes from DEC and Laura Bridge from Timeplex for their contributions to the bridging descriptions. This document could not have been completed without the expertise of the IP over Large Public Data Networks working group of the IETF.Bradley, Brown & Malis [Page 1]RFC 1490 Multiprotocol over Frame Relay July 19931. Conventions and Acronyms The following language conventions are used in the items of specification in this document: o Must, Shall or Mandatory -- the item is an absolute requirement of the specification. o Should or Recommended -- the item should generally be followed for all but exceptional circumstances. o May or Optional -- the item is truly optional and may be followed or ignored according to the needs of the implementor. All drawings in this document are drawn with the left-most bit as the high order bit for transmission. For example, the dawings might be labeled as: 0 1 2 3 4 5 6 7 bits +---+---+---+---+---+---+---+ +---------------------------+ | flag (7E hexadecimal) | +---------------------------+ | Q.922 Address* | +-- --+ | | +---------------------------+ : : : : +---------------------------+ Drawings that would be too large to fit onto one page if each octet were presented on a single line are drawn with two octets per line. These are also drawn with the left-most bit as the high order bit for transmission. There will be a "+" to distinguish between octets as in the following example.Bradley, Brown & Malis [Page 2]RFC 1490 Multiprotocol over Frame Relay July 1993 |--- octet one ---|--- octet two ---| 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ +--------------------------------------------+ | Organizationally Unique | +-- +--------------------+ | Identifier | Protocol | +-----------------------+--------------------+ | Identifier | +-----------------------+ The following are common acronyms used throughout this document. BECN - Backward Explicit Congestion Notification BPDU - Bridge Protocol Data Unit C/R - Command/Response bit DCE - Data Communication Equipment DE - Discard Eligibility bit DTE - Data Terminal Equipment FECN - Forward Explicit Congestion Notification PDU - Protocol Data Unit PTT - Postal Telephone & Telegraph SNAP - Subnetwork Access Protocol2. Introduction The following discussion applies to those devices which serve as end stations (DTEs) on a public or private Frame Relay network (for example, provided by a common carrier or PTT. It will not discuss the behavior of those stations that are considered a part of the Frame Relay network (DCEs) other than to explain situations in which the DTE must react. The Frame Relay network provides a number of virtual circuits that form the basis for connections between stations attached to the same Frame Relay network. The resulting set of interconnected devices forms a private Frame Relay group which may be either fully interconnected with a complete "mesh" of virtual circuits, or only partially interconnected. In either case, each virtual circuit is uniquely identified at each Frame Relay interface by a Data Link Connection Identifier (DLCI). In most circumstances, DLCIs have strictly local significance at each Frame Relay interface. The specifications in this document are intended to apply to both switched and permanent virtual circuits.Bradley, Brown & Malis [Page 3]RFC 1490 Multiprotocol over Frame Relay July 19933. Frame Format All protocols must encapsulate their packets within a Q.922 Annex A frame [1,2]. Additionally, frames shall contain information necessary to identify the protocol carried within the protocol data unit (PDU), thus allowing the receiver to properly process the incoming packet. The format shall be as follows: +---------------------------+ | flag (7E hexadecimal) | +---------------------------+ | Q.922 Address* | +-- --+ | | +---------------------------+ | Control (UI = 0x03) | +---------------------------+ | Optional Pad (0x00) | +---------------------------+ | NLPID | +---------------------------+ | . | | . | | . | | Data | | . | | . | +---------------------------+ | Frame Check Sequence | +-- . --+ | (two octets) | +---------------------------+ | flag (7E hexadecimal) | +---------------------------+ * Q.922 addresses, as presently defined, are two octets and contain a 10-bit DLCI. In some networks Q.922 addresses may optionally be increased to three or four octets. The control field is the Q.922 control field. The UI (0x03) value is used unless it is negotiated otherwise. The use of XID (0xAF or 0xBF) is permitted and is discussed later. The pad field is used to align the remainder of the frame to a two octet boundary. There may be zero or one pad octet within the pad field and, if present, must have a value of zero. The Network Level Protocol ID (NLPID) field is administered by ISOBradley, Brown & Malis [Page 4]RFC 1490 Multiprotocol over Frame Relay July 1993 and CCITT. It contains values for many different protocols including IP, CLNP and IEEE Subnetwork Access Protocol (SNAP)[10]. This field tells the receiver what encapsulation or what protocol follows. Values for this field are defined in ISO/IEC TR 9577 [3]. A NLPID value of 0x00 is defined within ISO/IEC TR 9577 as the Null Network Layer or Inactive Set. Since it cannot be distinguished from a pad field, and because it has no significance within the context of this encapsulation scheme, a NLPID value of 0x00 is invalid under the Frame Relay encapsulation. The Appendix contains a list of some of the more commonly used NLPID values. There is no commonly implemented minimum maximum frame size for Frame Relay. A network must, however, support at least a 262 octet maximum. Generally, the maximum will be greater than or equal to 1600 octets, but each Frame Relay provider will specify an appropriate value for its network. A Frame Relay DTE, therefore, must allow the maximum acceptable frame size to be configurable. The minimum frame size allowed for Frame Relay is five octets between the opening and closing flags assuming a two octet Q.922 address field. This minimum increases to six octets for three octet Q.922 address and seven octets for the four octet Q.922 address format.4. Interconnect Issues There are two basic types of data packets that travel within the Frame Relay network: routed packets and bridged packets. These packets have distinct formats and therefore, must contain an indicator that the destination may use to correctly interpret the contents of the frame. This indicator is embedded within the NLPID and SNAP header information. For those protocols that do not have a NLPID already assigned, it is necessary to provide a mechanism to allow easy protocol identification. There is a NLPID value defined indicating the presence of a SNAP header. A SNAP header is of the form: +--------------------------------------------+ | Organizationally Unique | +-- +--------------------+ | Identifier | Protocol | +-----------------------+--------------------+ | Identifier | +-----------------------+ All stations must be able to accept and properly interpret both theBradley, Brown & Malis [Page 5]RFC 1490 Multiprotocol over Frame Relay July 1993 NLPID encapsulation and the SNAP header encapsulation for a routed packet. The three-octet Organizationally Unique Identifier (OUI) identifies an organization which administers the meaning of the Protocol Identifier (PID) which follows. Together they identify a distinct protocol. Note that OUI 0x00-00-00 specifies that the following PID is an Ethertype.4.1. Routed Frames Some protocols will have an assigned NLPID, but because the NLPID numbering space is so limited, not all protocols have specific NLPID values assigned to them. When packets of such protocols are routed over Frame Relay networks, they are sent using the NLPID 0x80 (which indicates a SNAP follows) followed by SNAP. If the protocol has an Ethertype assigned, the OUI is 0x00-00-00 (which indicates an Ethertype follows), and PID is the Ethertype of the protocol in use. There will be one pad octet to align the protocol data on a two octet boundary as shown below. Format of Routed Frames with Ethertypes +-------------------------------+ | Q.922 Address | +---------------+---------------+ |Control 0x03 | pad 0x00 | +---------------+---------------+ | NLPID 0x80 | OUI 0x00 | +---------------+ --+ | OUI 0x00-00 | +-------------------------------+ | Ethertype | +-------------------------------+ | Protocol Data | +-------------------------------+ | FCS | +-------------------------------+ In the few cases when a protocol has an assigned NLPID (see appendix), 48 bits can be saved using the format below:
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -