📄 rfc2883.txt
字号:
Network Working Group S. FloydRequest for Comments: 2883 ACIRICategory: Standards Track J. Mahdavi Novell M. Mathis Pittsburgh Supercomputing Center M. Podolsky UC Berkeley July 2000 An Extension to the Selective Acknowledgement (SACK) Option for TCPStatus of this Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.Copyright Notice Copyright (C) The Internet Society (2000). All Rights Reserved.Abstract This note defines an extension of the Selective Acknowledgement (SACK) Option [RFC2018] for TCP. RFC 2018 specified the use of the SACK option for acknowledging out-of-sequence data not covered by TCP's cumulative acknowledgement field. This note extends RFC 2018 by specifying the use of the SACK option for acknowledging duplicate packets. This note suggests that when duplicate packets are received, the first block of the SACK option field can be used to report the sequence numbers of the packet that triggered the acknowledgement. This extension to the SACK option allows the TCP sender to infer the order of packets received at the receiver, allowing the sender to infer when it has unnecessarily retransmitted a packet. A TCP sender could then use this information for more robust operation in an environment of reordered packets [BPS99], ACK loss, packet replication, and/or early retransmit timeouts.1. Conventions and Acronyms The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be interpreted as described in [B97].Floyd, et al. Standards Track [Page 1]RFC 2883 SACK Extension July 20002. Introduction The Selective Acknowledgement (SACK) option defined in RFC 2018 is used by the TCP data receiver to acknowledge non-contiguous blocks of data not covered by the Cumulative Acknowledgement field. However, RFC 2018 does not specify the use of the SACK option when duplicate segments are received. This note specifies the use of the SACK option when acknowledging the receipt of a duplicate packet [F99]. We use the term D-SACK (for duplicate-SACK) to refer to a SACK block that reports a duplicate segment. This document does not make any changes to TCP's use of the cumulative acknowledgement field, or to the TCP receiver's decision of *when* to send an acknowledgement packet. This document only concerns the contents of the SACK option when an acknowledgement is sent. This extension is compatible with current implementations of the SACK option in TCP. That is, if one of the TCP end-nodes does not implement this D-SACK extension and the other TCP end-node does, we believe that this use of the D-SACK extension by one of the end nodes will not introduce problems. The use of D-SACK does not require separate negotiation between a TCP sender and receiver that have already negotiated SACK capability. The absence of separate negotiation for D-SACK means that the TCP receiver could send D-SACK blocks when the TCP sender does not understand this extension to SACK. In this case, the TCP sender will simply discard any D-SACK blocks, and process the other SACK blocks in the SACK option field as it normally would.Floyd, et al. Standards Track [Page 2]RFC 2883 SACK Extension July 20003. The Sack Option Format as defined in RFC 2018 The SACK option as defined in RFC 2018 is as follows: +--------+--------+ | Kind=5 | Length | +--------+--------+--------+--------+ | Left Edge of 1st Block | +--------+--------+--------+--------+ | Right Edge of 1st Block | +--------+--------+--------+--------+ | | / . . . / | | +--------+--------+--------+--------+ | Left Edge of nth Block | +--------+--------+--------+--------+ | Right Edge of nth Block | +--------+--------+--------+--------+ The Selective Acknowledgement (SACK) option in the TCP header contains a number of SACK blocks, where each block specifies the left and right edge of a block of data received at the TCP receiver. In particular, a block represents a contiguous sequence space of data received and queued at the receiver, where the "left edge" of the block is the first sequence number of the block, and the "right edge" is the sequence number immediately following the last sequence number of the block. RFC 2018 implies that the first SACK block specify the segment that triggered the acknowledgement. From RFC 2018, when the data receiver chooses to send a SACK option, "the first SACK block ... MUST specify the contiguous block of data containing the segment which triggered this ACK, unless that segment advanced the Acknowledgment Number field in the header." However, RFC 2018 does not address the use of the SACK option when acknowledging a duplicate segment. For example, RFC 2018 specifies that "each block represents received bytes of data that are contiguous and isolated". RFC 2018 further specifies that "if sent at all, SACK options SHOULD be included in all ACKs which do not ACK the highest sequence number in the data receiver's queue." RFC 2018 does not specify the use of the SACK option when a duplicate segment is received, and the cumulative acknowledgement field in the ACK acknowledges all of the data in the data receiver's queue.Floyd, et al. Standards Track [Page 3]RFC 2883 SACK Extension July 20004. Use of the SACK option for reporting a duplicate segment This section specifies the use of SACK blocks when the SACK option is used in reporting a duplicate segment. When D-SACK is used, the first block of the SACK option should be a D-SACK block specifying the sequence numbers for the duplicate segment that triggers the acknowledgement. If the duplicate segment is part of a larger block of non-contiguous data in the receiver's data queue, then the following SACK block should be used to specify this larger block. Additional SACK blocks can be used to specify additional non- contiguous blocks of data, as specified in RFC 2018. The guidelines for reporting duplicate segments are summarized below: (1) A D-SACK block is only used to report a duplicate contiguous sequence of data received by the receiver in the most recent packet. (2) Each duplicate contiguous sequence of data received is reported in at most one D-SACK block. (I.e., the receiver sends two identical D-SACK blocks in subsequent packets only if the receiver receives two duplicate segments.) (3) The left edge of the D-SACK block specifies the first sequence number of the duplicate contiguous sequence, and the right edge of the D-SACK block specifies the sequence number immediately following the last sequence in the duplicate contiguous sequence. (4) If the D-SACK block reports a duplicate contiguous sequence from a (possibly larger) block of data in the receiver's data queue above the cumulative acknowledgement, then the second SACK block in that SACK option should specify that (possibly larger) block of data. (5) Following the SACK blocks described above for reporting duplicate segments, additional SACK blocks can be used for reporting additional blocks of data, as specified in RFC 2018. Note that because each duplicate segment is reported in only one ACK packet, information about that duplicate segment will be lost if that ACK packet is dropped in the network.4.1 Reporting Full Duplicate Segments We illustrate these guidelines with three examples. In each example, we assume that the data receiver has first received eight segments of 500 bytes each, and has sent an acknowledgement with the cumulative acknowledgement field set to 4000 (assuming the first sequence number is zero). The D-SACK block is underlined in each example.Floyd, et al. Standards Track [Page 4]RFC 2883 SACK Extension July 20004.1.1. Example 1: Reporting a duplicate segment. Because several ACK packets are lost, the data sender retransmits packet 3000-3499, and the data receiver subsequently receives a duplicate segment with sequence numbers 3000-3499. The receiver sends an acknowledgement with the cumulative acknowledgement field set to 4000, and the first, D-SACK block specifying sequence numbers 3000-3500. Transmitted Received ACK Sent Segment Segment (Including SACK Blocks) 3000-3499 3000-3499 3500 (ACK dropped) 3500-3999 3500-3999 4000 (ACK dropped) 3000-3499 3000-3499 4000, SACK=3000-3500 ---------4.1.2. Example 2: Reporting an out-of-order segment and a duplicate segment. Following a lost data packet, the receiver receives an out-of-order data segment, which triggers the SACK option as specified in RFC 2018. Because of several lost ACK packets, the sender then retransmits a data packet. The receiver receives the duplicate packet, and reports it in the first, D-SACK block: Transmitted Received ACK Sent Segment Segment (Including SACK Blocks) 3000-3499 3000-3499 3500 (ACK dropped) 3500-3999 3500-3999 4000 (ACK dropped) 4000-4499 (data packet dropped) 4500-4999 4500-4999 4000, SACK=4500-5000 (ACK dropped) 3000-3499 3000-3499 4000, SACK=3000-3500, 4500-5000 ---------Floyd, et al. Standards Track [Page 5]RFC 2883 SACK Extension July 20004.1.3. Example 3: Reporting a duplicate of an out-of-order segment. Because of a lost data packet, the receiver receives two out-of-order segments. The receiver next receives a duplicate segment for one of these out-of-order segments: Transmitted Received ACK Sent Segment Segment (Including SACK Blocks) 3500-3999 3500-3999 4000 4000-4499 (data packet dropped) 4500-4999 4500-4999 4000, SACK=4500-5000 5000-5499 5000-5499 4000, SACK=4500-5500 (duplicated packet) 5000-5499 4000, SACK=5000-5500, 4500-5500 ---------4.2. Reporting Partial Duplicate Segments It may be possible that a sender transmits a packet that includes one or more duplicate sub-segments--that is, only part but not all of the transmitted packet has already arrived at the receiver. This can occur when the size of the sender's transmitted segments increases, which can occur when the PMTU increases in the middle of a TCP session, for example. The guidelines in Section 4 above apply to reporting partial as well as full duplicate segments. This section gives examples of these guidelines when reporting partial duplicate segments. When the SACK option is used for reporting partial duplicate segments, the first D-SACK block reports the first duplicate sub- segment. If the data packet being acknowledged contains multiple partial duplicate sub-segments, then only the first such duplicate sub-segment is reported in the SACK option. We illustrate this with
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -