📄 rfc2309.txt
字号:
Network Working Group B. Braden, USC/ISIRequest for Comments: 2309 D. Clark, MIT LCSCategory: Informational J. Crowcroft, UCL B. Davie, Cisco Systems S. Deering, Cisco Systems D. Estrin, USC S. Floyd, LBNL V. Jacobson, LBNL G. Minshall, Fiberlane C. Partridge, BBN L. Peterson, University of Arizona K. Ramakrishnan, ATT Labs Research S. Shenker, Xerox PARC J. Wroclawski, MIT LCS L. Zhang, UCLA April 1998 Recommendations on Queue Management and Congestion Avoidance in the InternetStatus of Memo This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.Copyright Notice Copyright (C) The Internet Society (1998). All Rights Reserved.Abstract This memo presents two recommendations to the Internet community concerning measures to improve and preserve Internet performance. It presents a strong recommendation for testing, standardization, and widespread deployment of active queue management in routers, to improve the performance of today's Internet. It also urges a concerted effort of research, measurement, and ultimate deployment of router mechanisms to protect the Internet from flows that are not sufficiently responsive to congestion notification.Braden, et. al. Informational [Page 1]RFC 2309 Internet Performance Recommendations April 19981. INTRODUCTION The Internet protocol architecture is based on a connectionless end- to-end packet service using the IP protocol. The advantages of its connectionless design, flexibility and robustness, have been amply demonstrated. However, these advantages are not without cost: careful design is required to provide good service under heavy load. In fact, lack of attention to the dynamics of packet forwarding can result in severe service degradation or "Internet meltdown". This phenomenon was first observed during the early growth phase of the Internet of the mid 1980s [Nagle84], and is technically called "congestion collapse". The original fix for Internet meltdown was provided by Van Jacobson. Beginning in 1986, Jacobson developed the congestion avoidance mechanisms that are now required in TCP implementations [Jacobson88, HostReq89]. These mechanisms operate in the hosts to cause TCP connections to "back off" during congestion. We say that TCP flows are "responsive" to congestion signals (i.e., dropped packets) from the network. It is primarily these TCP congestion avoidance algorithms that prevent the congestion collapse of today's Internet. However, that is not the end of the story. Considerable research has been done on Internet dynamics since 1988, and the Internet has grown. It has become clear that the TCP congestion avoidance mechanisms [RFC2001], while necessary and powerful, are not sufficient to provide good service in all circumstances. Basically, there is a limit to how much control can be accomplished from the edges of the network. Some mechanisms are needed in the routers to complement the endpoint congestion avoidance mechanisms. It is useful to distinguish between two classes of router algorithms related to congestion control: "queue management" versus "scheduling" algorithms. To a rough approximation, queue management algorithms manage the length of packet queues by dropping packets when necessary or appropriate, while scheduling algorithms determine which packet to send next and are used primarily to manage the allocation of bandwidth among flows. While these two router mechanisms are closely related, they address rather different performance issues. This memo highlights two router performance issues. The first issue is the need for an advanced form of router queue management that we call "active queue management." Section 2 summarizes the benefits that active queue management can bring. Section 3 describes a recommended active queue management mechanism, called Random Early Detection or "RED". We expect that the RED algorithm can be used with a wide variety of scheduling algorithms, can be implemented relatively efficiently, and will provide significant InternetBraden, et. al. Informational [Page 2]RFC 2309 Internet Performance Recommendations April 1998 performance improvement. The second issue, discussed in Section 4 of this memo, is the potential for future congestion collapse of the Internet due to flows that are unresponsive, or not sufficiently responsive, to congestion indications. Unfortunately, there is no consensus solution to controlling congestion caused by such aggressive flows; significant research and engineering will be required before any solution will be available. It is imperative that this work be energetically pursued, to ensure the future stability of the Internet. Section 5 concludes the memo with a set of recommendations to the IETF concerning these topics. The discussion in this memo applies to "best-effort" traffic. The Internet integrated services architecture, which provides a mechanism for protecting individual flows from congestion, introduces its own queue management and scheduling algorithms [Shenker96, Wroclawski96]. Similarly, the discussion of queue management and congestion control requirements for differential services is a separate issue. However, we do not expect the deployment of integrated services and differential services to significantly diminish the importance of the best-effort traffic issues discussed in this memo. Preparation of this memo resulted from past discussions of end-to-end performance, Internet congestion, and RED in the End-to-End Research Group of the Internet Research Task Force (IRTF).2. THE NEED FOR ACTIVE QUEUE MANAGEMENT The traditional technique for managing router queue lengths is to set a maximum length (in terms of packets) for each queue, accept packets for the queue until the maximum length is reached, then reject (drop) subsequent incoming packets until the queue decreases because a packet from the queue has been transmitted. This technique is known as "tail drop", since the packet that arrived most recently (i.e., the one on the tail of the queue) is dropped when the queue is full. This method has served the Internet well for years, but it has two important drawbacks. 1. Lock-Out In some situations tail drop allows a single connection or a few flows to monopolize queue space, preventing other connections from getting room in the queue. This "lock-out" phenomenon is often the result of synchronization or other timing effects.Braden, et. al. Informational [Page 3]RFC 2309 Internet Performance Recommendations April 1998 2. Full Queues The tail drop discipline allows queues to maintain a full (or, almost full) status for long periods of time, since tail drop signals congestion (via a packet drop) only when the queue has become full. It is important to reduce the steady-state queue size, and this is perhaps queue management's most important goal. The naive assumption might be that there is a simple tradeoff between delay and throughput, and that the recommendation that queues be maintained in a "non-full" state essentially translates to a recommendation that low end-to-end delay is more important than high throughput. However, this does not take into account the critical role that packet bursts play in Internet performance. Even though TCP constrains a flow's window size, packets often arrive at routers in bursts [Leland94]. If the queue is full or almost full, an arriving burst will cause multiple packets to be dropped. This can result in a global synchronization of flows throttling back, followed by a sustained period of lowered link utilization, reducing overall throughput. The point of buffering in the network is to absorb data bursts and to transmit them during the (hopefully) ensuing bursts of silence. This is essential to permit the transmission of bursty data. It should be clear why we would like to have normally- small queues in routers: we want to have queue capacity to absorb the bursts. The counter-intuitive result is that maintaining normally-small queues can result in higher throughput as well as lower end-to-end delay. In short, queue limits should not reflect the steady state queues we want maintained in the network; instead, they should reflect the size of bursts we need to absorb. Besides tail drop, two alternative queue disciplines that can be applied when the queue becomes full are "random drop on full" or "drop front on full". Under the random drop on full discipline, a router drops a randomly selected packet from the queue (which can be an expensive operation, since it naively requires an O(N) walk through the packet queue) when the queue is full and a new packet arrives. Under the "drop front on full" discipline [Lakshman96], the router drops the packet at the front of the queue when the queue is full and a new packet arrives. Both of these solve the lock-out problem, but neither solves the full-queues problem described above.Braden, et. al. Informational [Page 4]RFC 2309 Internet Performance Recommendations April 1998 We know in general how to solve the full-queues problem for "responsive" flows, i.e., those flows that throttle back in response to congestion notification. In the current Internet, dropped packets serve as a critical mechanism of congestion notification to end nodes. The solution to the full-queues problem is for routers to drop packets before a queue becomes full, so that end nodes can respond to congestion before buffers overflow. We call such a proactive approach "active queue management". By dropping packets before buffers overflow, active queue management allows routers to control when and how many packets to drop. The next section introduces RED, an active queue management mechanism that solves both problems listed above (given responsive flows). In summary, an active queue management mechanism can provide the following advantages for responsive flows. 1. Reduce number of packets dropped in routers Packet bursts are an unavoidable aspect of packet networks [Willinger95]. If all the queue space in a router is already committed to "steady state" traffic or if the buffer space is inadequate, then the router will have no ability to buffer bursts. By keeping the average queue size small, active queue management will provide greater capacity to absorb naturally- occurring bursts without dropping packets. Furthermore, without active queue management, more packets will be dropped when a queue does overflow. This is undesirable for several reasons. First, with a shared queue and the tail drop discipline, an unnecessary global synchronization of flows cutting back can result in lowered average link utilization, and hence lowered network throughput. Second, TCP recovers with more difficulty from a burst of packet drops than from a single packet drop. Third, unnecessary packet drops represent a possible waste of bandwidth on the way to the drop point. We note that while RED can manage queue lengths and reduce end- to-end latency even in the absence of end-to-end congestion control, RED will be able to reduce packet dropping only in an environment that continues to be dominated by end-to-end congestion control. 2. Provide lower-delay interactive service By keeping the average queue size small, queue management will reduce the delays seen by flows. This is particularly important for interactive applications such as short Web transfers, Telnet traffic, or interactive audio-video sessions, whose subjectiveBraden, et. al. Informational [Page 5]RFC 2309 Internet Performance Recommendations April 1998 (and objective) performance is better when the end-to-end delay is low. 3. Avoid lock-out behavior Active queue management can prevent lock-out behavior by ensuring that there will almost always be a buffer available for an incoming packet. For the same reason, active queue management can prevent a router bias against low bandwidth but highly bursty flows. It is clear that lock-out is undesirable because it constitutes a gross unfairness among groups of flows. However, we stop short of calling this benefit "increased fairness", because general fairness among flows requires per-flow state, which is not provided by queue management. For example, in a router using queue management but only FIFO scheduling, two TCP flows may receive very different bandwidths simply because they have different round-trip times [Floyd91], and a flow that does not use congestion control may receive more bandwidth than a flow that does. Per-flow state to achieve general fairness might be maintained by a per-flow scheduling algorithm such as Fair Queueing (FQ) [Demers90], or a class-based scheduling algorithm such as CBQ [Floyd95], for example. On the other hand, active queue management is needed even for routers that use per-flow scheduling algorithms such as FQ or class-based scheduling algorithms such as CBQ. This is because per-flow scheduling algorithms by themselves do nothing to control the overall queue size or the size of individual queues. Active queue management is needed to control the overall average queue sizes, so that arriving bursts can be accommodated without dropping packets. In addition, active queue management should
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -