📄 rfc166.txt
字号:
(It is expected that additional data types, such as floating point and user-defined types, will be added as needed.) Data Type Meaning Unit Length B Bit string 1 bit O Bit string 3 bits X Bit string 4 bits E EBCDIC character 8 bits A Network ASCII character 8 bits The value expression is defined below. valueexpression ::= value | <null> value ::= literal | arithmeticexpression literal ::= literaltype "string" literaltype ::= B | O | X | E | A The value expression is the nominal value of a term expressed in the format indicated by the data type. It is repeated according to the replication expression. A null value expression in the input stream defaults to the data present in the input stream. The data must comply with the datatype attribute, however. A null value expression generates padding according to Restrictions and Interpretations of Term Functions. The length expression is defined below. lengthexpression ::= arithmeticexpression | <null>Anderson, et al. [Page 14]RFC 166 Data Reconfiguration Service May 1971 The length expression states the length of the field containing the value expression. If the length expression is less than or equal to zero, the term succeeds but the appropriate stream pointer is not advanced. Positive lengths cause the appropriate stream pointer to be advanced if the term otherwise succeeds. Control is defined under TERM AND RULE SEQUENCING.Term Format 3 Term format 3 is shown below. descriptor It is identical to term format 2 with the omission of the identifier. Term format 3 is generally used in the output stream. It is used in the input stream where input data is to be passed over but not retained for emission or later reference.Term Format 4 The fourth term format is shown below. comparator ::= (value connective value control) | (identifier *<=* value control) value ::= literal | arithmeticexpression literal ::= literaltype "string" literaltype ::= B | O | X | E | A string ::= from 0 to 256 characters connective ::= .LE. | .LT. | .GE. | .GT. | .EQ. | .NE. The fourth term format is used for assignment and comparison. The assignment operator *<=* assigns the value to the identifier. The connectives have their usual meaning. Values to be compared must have the same type and length attributes or an error condition arises and the form fails.The Application of a Term The elements of a term are applied by the following sequence of steps. 1. The data type, value expression, and length expression together specify a unit value, call it x.Anderson, et al. [Page 15]RFC 166 Data Reconfiguration Service May 1971 2. The replication expression specifies the number of times x is to be repeated. The value of the concatenated xs becomes y of length L. 3. If the term is an input stream term then the value of y of length L is tested with the input value beginning at the current input pointer position. 4. If the input value satisfies the constraints of y over length L then the input value of length L becomes the value of the term. In an output stream term, the procedure is the same except that the source of input is the value of the term(s) named in the value expression and the data is emitted in the output stream. The above procedure is modified to include a one term look-ahead where replicated values are of indefinite length because of the arbitrary symbol, #.Restrictions and Interpretations of Term Functions 1. Terms having indefinite lengths because their values are repeated according to the # symbol, must be separated by some type-specific data such as a literal. (A literal isn't specifically required, however. An arbitrary number of ASCII characters could be terminated by a non-ASCII character.) 2. Truncation and padding is as follows: a) Character to character (A <-> E) conversion is left- justified and truncated or padded on the right with blanks. b) Character to numeric and numeric to numeric conversions are right-justified and truncated or padded on the left with zeros. c) Numeric to character conversions is right-justified and left-padded with blanks. 3. The following are ignored in a form definition over the control connection. a) TELNET control characters. b) Blanks except within quotes. c) /* string */ is treated as comments except within quotes. 4. The following defaults prevail where the term part is omitted. a) The replication expression defaults to one. b) # in an output stream term defaults to one. c) The value expression of an input stream term defaults toAnderson, et al. [Page 16]RFC 166 Data Reconfiguration Service May 1971 the value found in the input stream, but the input stream must conform to the data type and length expression. The value expression of an output stream term defaults to padding only. e) The length expression defaults to the size of the quantity determined by the data type and value expression. f) Control defaults to the next sequential term if a term is successfully applied; else control defaults to the next sequential rule. If _where_ evaluates to an undefined _label_ the form fails. 5. Arithmetic expressions are evaluated left-to-right with no precedence. 6. The following limits prevail. a) Binary lengths are <= 32 bits b) Character strings are <= 256 8-bit characters c) Identifier names are <= 4 characters d) Maximum number of identifiers is <= 256 e) Label integers are >= 0 and <= 9999 7. Value and length operators product 32-bit binary integers. The value operator is currently intended for converting A or E type decimal character strings to their binary correspondents. For example, the value of E'12' would be 0......01100. The value of E'AB' would cause the form to fail.TERM AND RULE SEQUENCING Sequencing may be explicitly controlled by including control in a term. control ::= :options | <null> options ::= S(where) | F(where) | U(where) S(where) , F(where) | F(where) , S(where) where ::= arithmeticexpression | R(arithmeticexpression) S, F, and U denote success, fail, and unconditional transfers, respectively. _Where_ evaluates to a _rule_ label, thus transfer can be effected from within a rule (at the end of a term) to the beginning of another rule. R means terminate the form and return the evaluated expression to the initiator over the control connection (if still open). If terms are not explicitly sequenced, the following defaults prevail.Anderson, et al. [Page 17]RFC 166 Data Reconfiguration Service May 1971 1) When a term fails go to the next sequential rule. 2) When a term succeeds go to the next sequential term within the rule. 3) At the end of a rule, go to the next sequential rule. Note in the following example, the correlation between transfer of control and movement of the input pointer. 1 XYZ(,B,,8:S(2),F(3)) : XYZ ; 2 . . . . . . . 3 . . . . . . . The value of XYZ will never be emitted in the output stream since control is transferred out of the rule upon either success or failure. If the term succeeds, the 8 bits of input will be assigned as the value of XYZ and rule 2 will then be applied to the same input stream data. That is, since the complete left hand side of rule 1 was not successfully applied, the input stream pointer is not advanced. IV. EXAMPLESREMARKS The following examples (forms and also single rules) are simple representative uses of the Form Machine. The examples are expressed in a term-per-line format only to aid the explanation. Typically, a single rule might be written as a single line.FIELD INSERTION To insert a field, separate the input into the two terms to allow the inserted field between them. For example, to do line numbering for a 121 character/line printer with a leading carriage control character, use the following form. (NUMB*<=*1); /*initialize line number counter to one*/ 1 CC(,E,,1:F(R(99))), /*pick up control character and save as CC*/ /*return a code of 99 upon exhaustion*/ LINE(,E,,121 : F(R(98))) /*save text as LINE*/ :CC, /*emit control character*/ (,E,NUMB,2), /*emit counter in first two columns*/ (,E,E".",1), /*emit period after line number*/ (,E,LINE,117), /*emit text, truncated in 117 byte field*/ (NUMB*<=*NUMB+1:U(1)); /*increment line counter and go to rule one*/;;Anderson, et al. [Page 18]RFC 166 Data Reconfiguration Service May 1971DELETION Data to be deleted should be isolated as separate terms on the left, so they may be omitted (by not emitting them) on the right. (,B,,8), /*isolate 8 bits to ignore*/ SAVE(,A,,10) /*extract 10 ASCII characters from input stream*/ :(,E,SAVE,); /*emit the characters in SAVE as EBCDIC characters whose length defaults to the length of SAVE, i.e., 10, and advance to the next rule*/ In the above example, if either input stream term fails, the next sequential rule is applied.VARIABLE LENGTH RECORDS Some devices, terminals and programs generate variable length records. The following rule picks up variable length EBCDIC records and translates them to ASCII. CHAR(#,E,,1), /*pick up all (an arbitrary number of) EBCDIC characters in the input stream*/ (,X,X"FF",2) /*followed by a hexadecimal literal, FF (terminal signal)*/ :(,A,CHAR,), /*emit them as ASCII*/ (,X,X"25",2); /*emit an ASCII carriage return*/STRING LENGTH COMPUTATION It is often necessary to prefix a length field to an arbitrarily long character string. The following rule prefixes an EBCDIC string with a one-byte length field. Q(#,E,,1), /*pick up all EBCDIC characters*/ TS(,X,X"FF",2) /*followed by a hexadecimal literal, FF*/ :(,B,L(Q)+2,8), /*emit the length of the characters plus the length of the literal plus the length of the count field itself, in an 8-bit field*/ Q, /*emit the characters*/ TS, /*emit the terminal*/Anderson, et al. [Page 19]RFC 166 Data Reconfiguration Service May 1971TRANSPOSITION It is often desirable to reorder fields, such as the following example. Q(,E,,20), R(,E,,10) , S(,E,,15), T(,E,,5) : R, T, S, Q ; The terms are emitted in a different order.CHARACTER PACKING AND UNPACKING In systems such as HASP, repeated sequences of characters are packed into a count followed by the character, for more efficient storage and transmission. The first form packs multiple characters and the second unpacks them. /*form to pack EBCDIC streams*/ /*returns 99 if OK, input exhausted*/ /*returns 98 if illegal EBCDIC*/ /*look for terminal signal FF which is not a legal EBCDIC*/ /*duplication count must be 0-254*/ 1 (,X,X"FF",2 : S(R(99))) ; /*pick up an EBCDIC char/* CHAR(,E,,1) ; /*get identical EBCDIC chars/* LEN(#,E,CHAR,1) /*emit the count and the char/* : (,B,L(LEN)+1,8), CHAR, (:U(1)); /*end of form*/;; /*form to unpack EBCDIC streams*/ /*look for terminal*/ 1 (,X,X"FF",2 : S(R(99))) ; /*emit character the number of times indicated*/ /*by the count, in a field the length indicated*/ /*by the counter contents*/ CNT(,B,,8), CHAR(,E,,1) : (CNT,E,CHAR,1:U(1)); /*failure of form*/ (:U(R(98))) ;; [ This RFC was put into machine readable form for entry ] [ into the online RFC archives by Simone Demmel 03/98 ]Anderson, et al. [Page 20]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -