📄 rfc1015.txt
字号:
provide this capability was MFEnet [11]. It was established in the early 1970's to provide DOE-supported users access to supercomputers, particularly a Cray 1 at Lawrence Livermore NationalLeiner [Page 5]RFC 1015 IRI Plan July 1987 Labs. Because MFEnet was established prior to widespread adoption of the TCP/IP protocol suite (to be discussed below), the MFEnet uses a different set of protocols. However, interfaces have been developed between the MFEnet and other networks, and a migration plan is currently under development. NASA Ames Research Center has long been in the forefront of using advanced computers to support scientific research. The latest computing facility, the Numerical Aerodynamic Simulator, uses a Cray 2 and other machines along with a number of networking technologies to provide support to computational fluid dynamics researchers [14]. This system uses the TCP/IP protocol suite both locally and remotely and provides easy access through advanced workstations. Recognizing the importance of advanced computers in carrying out scientific research, NSF in 1984 embarked on an ambitious program to provide supercomputer access to researchers. This program involved both the provision of supercomputers themselves (through purchase of computer time initially, and establishment of supercomputer centers) and provision of access to those supercomputers through an extensive networking program, NSFnet [15]. The NSFnet uses a number of existing networks (e.g. Arpanet, BITNET, MFEnet) and exploratory networks interconnected using the TCP/IP protocol suite (discussed below) to permit scientists widespread access to the supercomputer centers and each other. The NSFnet is also taking advantage of the widespread installation of campus and regional networks to achieve this connectivity in a cost effective manner. The above are only a small number of the current and existing networks being used to support research. Quarterman [11] provides a good synopsis of the networks currently in operation. It is obvious from this that effective interconnection of the networks can provide cost-efficient and reliable services. Starting in the early 1970's, recognizing that the military had a need to interconnect various networks (such as packet radio for mobile operation with long-line networks like the Arpanet), DARPA initiated the development of the internet technologies [16]. Beginning with the development of the protocols for interconnection and reliable transport (TCP/IP), the program has developed methods for providing electronic mail, remote login, file transfer and similar functions between differing computers over dissimilar networks [4,3]. Today, using that technology, thousands of computers are able to communicate with each other over a "virtual network" of approximately 200 networks using a common set of protocols. The concepts developed are being used in the reference model and protocols of the Open Systems Interconnection model being developed by the International Standards Organization (ISO) [17].Leiner [Page 6]RFC 1015 IRI Plan July 1987 This is becoming even more important with the widespread use of local area networks. As institutions install their own networks, and need to establish communications with computers at other sites, it is important to have a common set of protocols and a means for interconnecting the local networks to wide area networks.Internet Model The DARPA Internet system uses a naming and addressing protocol, called the Internet Protocol (IP), to interconnect networks into a single virtual network. Figure 1 shows the interconnection of a variety of networks into the Internet system. The naming and addressing structure allows any computer on any network to address in a uniform manner any computer on any other network. Special processors, called Gateways, are installed at the interfaces between two or more networks and provide both routing amongst the various networks as well as the appropriate translation from internet addresses to the address required for the attached networks. Thus, packets of data can flow between computers on the internet. Because of the possiblity of packet loss or errors, the Transmission Control Protocol (TCP) is used above the IP to provide for reliability and sequencing. TCP together with IP and the various networks and gateways then provides for reliable and ordered delivery of data between computers. A variety of functions can use this connection to provide service to the users. A summary of the functions provided by the current internet system is given in [4]. To assure interoperability between military users of the system, the Office of the Secretary of Defense mandated the use of the TCP/IP protocol suite wherever there is a need for interoperable packet switched communications. This led to the standardization of the protocols [18, 19, 20, 21, 22].Leiner [Page 7]RFC 1015 IRI Plan July 1987 +---+ +---+ +---+ +---+ +---+ +---+ | FS| | SC| | SC| | SC| | SC| | SC| +-+-+ +-+-+ +-+-+ +-+-+ +-+-+ +-+-+ | | | | | | --+-------+-----+-----+-------+--LAN-- --+------+-+---+----LAN-- | | | | | | +-+--+ +-+--+ +-+--+ +-+--+ | | | WS | | WS | | WS | | WS | | | +-+--+ +-+--+ +-+--+ +-+--+ | | +-+-+ +-+-+ | G | | G | +-+-+ +-+-+ | | +--------------+ +--------------+ | Agency | +-+-+ | Agency | | Network |--| G |--| Network | +------+-------+ +---+ +------+-----+-+ | | | +-+-+ +-+-+ | | G | | G | | +-+-+ +-+-+ | / / +-------+ / / | TS | / / +-+-----+ +--------------+ +--------------+ | |...| | Regional | | Commercial | T T T | Network | | Network | +-----+--------+ +------+-------+ | | +-+-+ | | G | | +-+-+ | | +-+-+ | | H | | +---+ ----+------+-----+-----+------LAN---- | | | | +-+--+ +-+--+ +-+--+ +-+--+ +-------------------------+ | WS | | WS | | WS | | WS | | H - Host | +-+--+ +-+--+ +-+--+ +-+--+ | WS - Workstation | | SC - Supercomputer | | TS - Terminal Server | | FS - File Server | | G - Gateway | +-------------------------+ Figure 1: Internet SystemLeiner [Page 8]RFC 1015 IRI Plan July 1987 Thus, the TCP/IP protocol suite and associated mechanisms (e.g. gateways) provides a way to interconnect heterogeneous computers on heterogenous networks. Routing and addressing functions are taken care of automatically and transparently to the users.The ISO is currently developing a set of standards for interconnection which are very similar in function to the DARPA developed technologies. Although ISO is making great strides, and the National Bureau of Standards is working with a set of manufacturers to develop and demonstrate these standards, the TCP/IP protocol suite still represents the most available and tested technology for interconnection of computers and networks. It is for that reason that several agencies/programs, including the Department of Defense, NSF and NASA/NAS, have all adopted the TCP/IP suite as the most viable set of standards currently. As the international standards mature, and products supporting them appear, it can be expected that the various networks will switch to using those standards.TECHNICAL APPROACH The Internet technology described above provides the basis for interconnection of the various agency networks. The means to interconnect must satisfy a number of constraints if it is to be viable in a multi-agency environment. Each agency must retain control of its own networks. Networks have been established to support agency-specific missions as well as general computer communications within the agency and its contractors. To assure that these missions continue to be supported appropriately, as well as assure appropriate accountability for the network operation, the mechanism for interconnection must not prevent the agencies from retaining control over their individual networks. This is not to say that agencies may not choose to have their individual networks operated by the IRI, or even turned over to the IRI if they determine that to be appropriate. Appropriate access control, privacy, and accounting mechanisms must be incorporated. This includes access control to data, resources, and the networks themselves, privacy of user data, and accounting mechanisms to support both cost allocation and cost auditing [23]. The technical and adminstrative approach must allow (indeed encourage) the incorporation of evolving technologies. In particular, the network must evolve towards provision of high bandwidth, type of service routing, and other advanced techniques to allow effective use of new computing technology in a distributed research environment.Leiner [Page 9]RFC 1015 IRI Plan July 1987Communications Infrastructure The communications infrastructure provides connectivity between user machines, workstations, and centralized resources such as supercomputers and database machines. This roughly corresponds to communications services at and below the transport layer in the ISO OSI reference model. There are two different types of networks. The first are local networks, meaning those which are internal to a facility, campus, etc. The second are networks which provide transit service between facilities. These transit networks can connect directly to computers, but are evolving in a direction of connecting local networks. The networks supported by the individual agencies directly are mainly in the category of transit (or long-haul) networks, as they typically provide nationwide connectivity, and usually leave communications within a facility to be dealt with by the facility itself. The IRI communications infrastructure thus deals mainly with the interconnection of transit networks. The internet model described above provides a simple method for interconnecting transit networks (as well as local networks.) By using IP gateways between the agency networks, packet transport service can be provided between computers on any of the various networks. The placement of the gateways and their capacity will have to be determined by an initial engineering study. In addition, as the IRI evolves, it may be cost-effective to install one or more wide area networks (or designate certain existing ones) to be IRI transit networks, to be used by all agencies on a cost sharing basis. Thus, the IRI communications infrastructure would consist of the interconnecting gateways plus any networks used specifically as transit networks. Using IP as the standard for interconnection of networks and global addressing provides a common virtual network packet transport service, upon which can be built various other network services such as file transfer and electronic mail. This will allow sharing of the communication facilities (channels,
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -