📄 rfc2583.txt
字号:
Network Working Group R. CarlsonRequest for Comments: 2583 ANLCategory: Informational L. Winkler ANL May 1999 Guidelines for Next Hop Client (NHC) DevelopersStatus of this Memo This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.Copyright Notice Copyright (C) The Internet Society (1999). All Rights Reserved.1. Abstract This document provides guidelines for developers of the Next Hop Resolution Protocol Clients (NHC). It assumes that the clients are directly connected to an ATM based NBMA network. The same principles will apply to clients connected to other types of NBMA networks. The intent is to define the interaction between the NHC code and the TCP/IP protocol stack of the local host operating system. The NHC is capable of sending NHRP requests to a Next Hop Resolution Protocol Server (NHS) to resolve both inter and intra LIS addresses. The NHS reply may be positive (ACK) indicating a short-cut path is available or negative (NAK) indicating that a shortcut is not available and the routed path must be used. The NHC must cache (maintain state) for both the ACK and NAK replies in order to use the correct shortcut or routed path. The NAK reply must be cached to avoid making repeated requests to the NHS when the routed path is being used.2. Overview In the Classical IP over ATM model [1], an ATM attached host communicates with an ATMARP server to resolve IP to ATM address semantics. This model supports the concept of a Logical IP Subnet (LIS) with intra LIS communications using direct PVCs/SVCs and inter LIS communications using IP routers to forward packets. This model easily maps to the conventional LAN model of subnets and routers. The Next Hop Resolution Protocol (NHRP) [2] defines how the LIS model can be modified to allow direct ATM SVCs (shortcut paths) for inter LIS traffic. With NHRP, nodes directly attached to an ATM network can bypass the IP routers and establish a direct switched virtualCarlson & Winkler Informational [Page 1]RFC 2583 Guidelines for NHC Developers May 1999 circuit to improve performance when needed. The NHS code replaces the ATMARP code in the ATMARP server. Each NHS serves a set of destination client hosts and cooperates with other NHSs to resolve NHRP next hop requests within their own logical ATM network. The NHC to NHS and NHS to NHS protocol interactions are described in [2]. Other documents in the NHRP series define the general applicability [3] and the transition from ATMARP servers to NHSs [4]. The NHC code replaces the ATMARP code in the local workstations. This code will take the destination IP address and map it into the ATM End Station Address (AESA) for both intra and inter LIS destinations. The returned AESA will be stored in a local cache table. In addition to storing the positive replies, the NHC will need to store the negative replies to avoid making repeated NHS calls when using the routed path. This document describes a base line method for caching the returned information. Other methods may be used as long as the same functionality is provided.3. IP Processing In the Classical IP LIS model [1] the TCP/IP protocol stack treats the ATM network as a simple data link layer protocol. When an application sends data using the Classical IP protocol, IP performs a routing table lookup to determine if the destination is reachable via a local interface or whether an intermediate router is the next hop to the IP destination. If the destination is found to be local (e.g. in the same LIS as the source) the packet will be passed to the local ATM interface with the next hop IP address set to the destination nodes IP address. At this point the ATMARP table will be searched to determine the ATM Address of the destination node. If no ATMARP table entry is found an ATMARP request will be sent to the ATMARP server. This server can reply with a positive (ACK) or negative (NAK) answer depending on the current information it has in its cache. If an ACK is received the host's local ATMARP table is filled in appropriately and the source is now able to send IP datagrams to the destination. If a NAK is returned, the calling application is notified of this error condition (e.g., ICMP destination unreachable). If the destination is found to be remote (e.g., in a different LIS from the source) the IP address of the next hop router is extracted from the IP routing table and the ATM Address of this router is looked up in the ATMARP table. Since the router is in the same LISCarlson & Winkler Informational [Page 2]RFC 2583 Guidelines for NHC Developers May 1999 as the source node, the ATMARP procedure described above will find the correct ATM Address or the packet will be marked as undeliverable and the user application will be notified of the error. The ATMARP service functions exactly as the existing ARP service provided on Ethernet broadcast networks. Since the ARP service will only try and resolve addresses for nodes that are in a single IP subnet, the ARP table only needs to keep positive answers. No state information is retained about failed mappings.4. NHC Processing In this section we briefly describe what is required in order for a host to take advantage of shortcuts through the ATM network. On the host, a NHC process initiates various NHRP requests in order to obtain access to the NHRP service. Within the ATM subnetwork, the ATMARP server is replaced with a NHS. As defined in [4] the NHS is required to respond to both ATMARP and NHRP Resolution requests. In the nodes wishing to take advantage of shortcut paths across the ATM subnetwork, the ATMARP client code must be replaced with NHC code. This allows the source node to ask for the ATM AESA of both local and remote nodes. Finally the source node must be modified to know when it should ask for the ATM AESA of a remote node and when the local LIS router should be used. These modifications are described in the remainder of this document. The protocol processing described in [2] states a source may query a NHS for the ATM AESA of a destination node. However as is pointed out in [5], to achieve shortcut paths through the ATM network, it is not enough to simply replace the ATMARP client code with the NHC code. This is because the source host will never ask the NHS for the ATM AESA of a node in a remote LIS. When the source consults the IP routing table, it performs the local/remote test, before the NHC code is processed. As a result, the IP address of the next hop router will be used by the NHC instead of the IP address of the remote (inter LIS) host. The NHC code must ignore the result of the IP routing table lookup and perform its own local/remote test. The NHC must perform the following functions: 1. Test to see if the destination node is `local' to this LIS. If so use the existing ATMARP rules described in [1]. 2. If not; send an NHRP message to the local NHS and attempt to setup a `shortcut' path. If successful; save the IP to ATM AESA mapping in the local NHC cache. 3. If not successful; use the routed path and save this state in the NHC cache so future requests don't test for a shortcut again.Carlson & Winkler Informational [Page 3]RFC 2583 Guidelines for NHC Developers May 1999 4. Allow user application to override system default operation and explicitly request a shortcut or routed path for a flow. It is required that this routed path state will be maintained in the same manner as the existing ATMARP service. That is a timer will be used to expire old information and some administrative function exists to manually delete data if needed.5. Need for State It is obvious that the IP to ATM AESA mappings should be maintained in a local cache to improve network performance. This soft state is maintained in today's ARP and ATMARP systems using timers to purge old or unused data. The NHC will maintain both inter and intra LIS IP to ATM Address mappings in the same manner. It may be less obvious that an NHC will also need to maintain this same soft state for inter LIS mappings using the routed path. If this state is not maintained, the source node will send requests to the NHS asking if a shortcut path can be setup every time a packet is sent over the routed path. Some of the features of this state are: 1. Cache lookups must be fast as they are done on every packet. 2. The cache lookup must be on the destination IP address instead of the next-hop router IP address. 3. Both ACK and NAK data should be cached for the length of the holding time parameter in the NHRP response. Since state must be maintained, the questions of where to maintain it, how to manually managed it, and how to selectively override it need to be addressed. No matter where this state information is kept, a method for manually examining and changing this state information must be provided. This is essential to insure that the network is operating properly. There are several possible locations for storing this state information, they are: 1. Store state in the `ARP' table. This is the traditional location for this IP to ATM address mappings. This table must be extended to handle the caching of negative (routed path) information. This solution provides a system wide service that may be used by the NHC. 2. Store state in the IP routing table. This is the traditional location for the local/remote state information.Carlson & Winkler Informational [Page 4]RFC 2583 Guidelines for NHC Developers May 1999 3. Store state in an ATM MIB structure. This is the traditional location for storing ATM VCC data. It also provides a system wide service that is geared toward ATM services. This avoids munging the `ARP' table to hold negative data. 4. Store state in the TCP Process Control Block. This allows a per process tailoring of shortcut or routed path information. This works well for TCP connections, but not UDP style services. 5. Store state in the socket structure. This also allows per process tailoring of the state information. 6. Store state in a newly defined table. The NHC should also support both local (per-process) and global (per-system) state. This would allow a system wide default while allowing a specific application to tailor the operation for a specific task. For example assume a site runs both a DNS server and FTP server on a single host. Inter LIS communications to the DNS server should take the routed path to avoid setup overhead. While an FTP session would benefit from the shortcut path to improve performance. Supporting both operations from a single client will require both a global state (e.g. use shortcut for FTP) and a local state (e.g. use routed path for DNS).5.1 Using TCP
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -