📄 rfc1190.txt
字号:
rates, including bursts of varying rate and duration, there is an opportunity to provide service to more subscribers by providing guaranteed service for the average data rate of each stream, and reserving additional network capacity, shared among all streams, to service the bursts. This concept has been recognized by analog voice network providers leading to the principle of time assigned speech interpolation (TASI) in which only the talkspurts of a speech conversation are transmitted, and, during silence periods, the circuit can be used to send the talkspurts of other conversations. The FlowSpec is intended to assist algorithms that perform similar kinds of functions. We do not propose such algorithms here, but rather expect that this will be an area for experimentation. To allow for experiments, and a range of ways that application traffic might be characterized, a "DutyFactor" is included in the FlowSpec and we expect that a "burst descriptor" will also be needed. The FlowSpec will need to be revised as experience is gained with connections involving numerous participants using multiple media across heterogeneous internetworks. We feel a change of the FlowSpec does not necessarily require a new version of ST, it only requires the FlowSpec version number be updated and software to manage the new FlowSpec to be distributed. We further suggest that if the change to the FlowSpec involves additional information for improved operation, such as a burst descriptor, that it be added to the end of the FlowSpec and that the current parameters be maintained so that obsolete software can be used to process the current parameters with minimum modifications.CIP Working Group [Page 15]RFC 1190 Internet Stream Protocol October 1990 **** **** * * ST Agent 1 * * +---+ * *------- o ---------* *-------+ B | * * * * +---+ * * **** +---+ * * | | | * * | | A +---------* * o ST Agent 3 | | * * | +---+ * * | * * *** * * * * +---+ * * ST Agent 2 * *-------+ C | * *------- o --------* * +---+ * * * * **** * * * * +---+ * * +---+ | E +--------* *-------+ D | +---+ * * +---+ *** Figure 2. Topology Used in Protocol Exchange Diagrams **** ST Agent 1 **** * +--+---14--- o -----15--+----+--44---+---+ * | +-+--11--- -----16--+-+ * | B | * | | * * |+-+--45---+---+ * | | * *++* +---+ * | | * 34 ||32 | +----4----+--+ | * || | A +----6----+----+ * o ST Agent 3 | +----5----+---+ * | +---+ * | * | 33 * | * ST *+* * | * Agent * | * * | * 2 -----24-+--+ * +---+ * +--+--23--- o -----25-+-----+--54---+ C | * * -----26-+---+ * +---+ **** -----27-+-+ | * * | | * +---+ * | | * +---+ | E +---74---+-+ +-+--64---+ D | +---+ * * +---+ *** Figure 3. Virtual Link Identifiers for SCMP MessagesCIP Working Group [Page 16]RFC 1190 Internet Stream Protocol October 19903. ST Control Message Protocol Functional Description This section contains a functional description of the ST Control Message Protocol (SCMP); Section 4 (page 75) specifies the formats of the control message PDUs. We begin with a description of stream setup. Mechanisms used to deal with the exceptional cases are then presented. Complications due to options that an application or a ST agent may select are then detailed. Once a stream has been established, the data transfer phase is entered; it is described. Once the data transfer phase has been completed, the stream must be torn down and resources released; the control messages used to perform this function are presented. The resources or participants of a stream may be changed during the lifetime of the stream; the procedures to make changes are described. Finally, the section concludes with a description of some ancillary functions, such as failure detection and recovery, HID negotiation, routing, security, etc. To help clarify the SCMP exchanges used to setup and maintain ST streams, we have included a series of figures in this section. The protocol interactions in the figures assume the topology shown in Figure 2. The figures, taken together, o Create a stream from an application at A to three peers at B, C and D, o Add a peer at E, o Disconnect peers B and C, and o D drops out of the stream. Other figures illustrate exchanges related to failure recovery. In order to make the dispatch function within SCMP more uniform and efficient, each end of a hop is assigned, by the agent at that end, a Virtual Link Identifier that uniquely (within that agent) identifies the hop and associates it with a particular stream's state machine(s). The identifier at the end of a link that is sending a message is called the Sender Virtual Link Identifier (SVLId); that at the receiving end is called the Receiver Virtual Link Identifier (RVLId). Whenever one agent sends a control message for the other to receive, the sender will place the receiver's identifier into the RVLId field of the message and its own identifier in the SVLId field. When a reply to the message is sent, the values in SVLId and RVLId fields will be reversed, reflecting the fact the sender and receiver roles are reversed. VLIds with values zero through three are received and should not be assigned in response to CONNECT messages. Figure 3 shows the hops that will be used in the examples and summarizes the VLIds that will be assigned to them.CIP Working Group [Page 17]RFC 1190 Internet Stream Protocol October 1990 Similarly, Figure 4 summarizes the HIDs that will eventually be negotiated as the stream is created. **** ST Agent 1 **** * +>+--1200-> o -------->+--->+-3600->+---+ * ^ * * * | B | * | * * +->+-6000->+---+ * | * *+** +---+ * | * ^ | +-------->+-->+ * | | A | * * o St Agent 3 | +-------->+-->+ * ^ +---+ * | * | 4801 * | * *+* * V * ST Agent 2 * ^ * +---+ * +>+--2400-> o ------->+->+->+-4800->+ C | **** * | * 4801 +---+ * | * +---+ * V * +---+ | E +<-4800--+<-+->+-4800->+ D | +---+ * * 4801 +---+ *** Figure 4. HIDs Assigned for ST User Packets Some of the diagrams that follow form a progression. For example, the steps required initially to establish a connection are spread across five figures. Within a progression, the actions on the first diagram are numbered 1.1, 1.2, etc.; within the second diagram they are numbered 2.1, 2.2, etc. Points where control leaves one diagram to enter another are identified with a continuation arrow "-->>", and are continued with "[a.b] >>-->" in the other diagram. The number in brackets shows the label where control left the earlier diagram. The reception of simple acknowledgments, e.g., ACKs, in one figure from another is omitted for clarity. 3.1. Stream Setup This section presents a description of stream setup assuming that everything succeeds -- HIDs are approved, any required resources are available, and the routing is correct. 3.1.1. Initial Setup at the Origin As described in Section 2.3 (page 11), the application has collected the information necessary to determine theCIP Working Group [Page 18]RFC 1190 Internet Stream Protocol October 1990 participants in the communication before passing it to the host ST agent at the origin. The host ST agent will take this information, allocate a Name for the stream (see Section 4.2.2.8 (page 87)), and create a stream. 3.1.2. Invoking the Routing Function An ST agent that is setting up a stream invokes a routing function to find a path to reach each of the targets specified in the TargetList. This is similar to the routing decision in IP. However, in this case the route is to a multitude of targets rather than to a single destination. The set of next-hops that an ST agent would select is not necessarily the same as the set of next hops that IP would select given a number of independent IP datagrams to the same destinations. The routing algorithm may attempt to optimize parameters other than the number of hops that the packets will take, such as delay, local network bandwidth consumption, or total internet bandwidth consumption. The result of the routing function is a set of next-hop ST agents and the parameters of the intervening network(s). The latter permit the ST agent to determine whether the selected network has the resources necessary to support the level of service requested in the FlowSpec. 3.1.3. Reserving Resources The intent of ST is to provide a guaranteed level of service by reserving internet resources for a stream during a setup phase rather than on a per packet basis. The relevant resources are not only the forwarding information maintained by the ST agents, but also packet switch processor bandwidth and buffer space, and network bandwidth and multicast group identifiers. Reservation of these resources can help to increase the reliability and decrease the delay and delay variance with which data packets are delivered. The FlowSpec contains all the information needed by the ST agent to allocate the necessary resources. When and how these resources are
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -