📄 rfc2859.txt
字号:
Network Working Group W. FangRequest for Comments: 2859 Princeton UniversityCategory: Experimental N. Seddigh B. Nandy Nortel Networks June 2000 A Time Sliding Window Three Colour Marker (TSWTCM)Status of this Memo This memo defines an Experimental Protocol for the Internet community. It does not specify an Internet standard of any kind. Discussion and suggestions for improvement are requested. Distribution of this memo is unlimited.Copyright Notice Copyright (C) The Internet Society (2000). All Rights Reserved.Abstract This memo defines a Time Sliding Window Three Colour Marker (TSWTCM), which can be used as a component in a Diff-Serv traffic conditioner [RFC2475, RFC2474]. The marker is intended to mark packets that will be treated by the Assured Forwarding (AF) Per Hop Behaviour (PHB) [AFPHB] in downstream routers. The TSWTCM meters a traffic stream and marks packets to be either green, yellow or red based on the measured throughput relative to two specified rates: Committed Target Rate (CTR) and Peak Target Rate (PTR).1.0 Introduction The Time Sliding Window Three Colour Marker (TSWTCM) is designed to mark packets of an IP traffic stream with colour of red, yellow or green. The marking is performed based on the measured throughput of the traffic stream as compared against the Committed Target Rate (CTR) and the Peak Target Rate (PTR). The TSWTCM is designed to mark packets contributing to sending rate below or equal to the CTR with green colour. Packets contributing to the portion of the rate between the CTR and PTR are marked yellow. Packets causing the rate to exceed PTR are marked with red colour. The TSWTCM has been primarily designed for traffic streams that will be forwarded based on the AF PHB in core routers.Fang, et al. Experimental [Page 1]RFC 2859 TSWTCM June 2000 The TSWTCM operates based on simple control theory principles of proportionally regulated feedback control.2.0 Overview of TSWTCM The TSWTCM consists of two independent components: a rate estimator, and a marker to associate a colour (drop precedence) with each packet. The marker uses the algorithm specified in section 4. If the marker is used with the AF PHB, each colour would correspond to a level of drop precedence. The rate estimator provides an estimate of the running average bandwidth. It takes into account burstiness and smoothes out its estimate to approximate the longer-term measured sending rate of the traffic stream. The marker uses the estimated rate to probabilistically associate packets with one of the three colours. Using a probabilistic function in the marker is beneficial to TCP flows as it reduces the likelihood of dropping multiple packets within a TCP window. The marker also works correctly with UDP traffic, i.e., it associates the appropriate portion of the UDP packets with yellow or red colour marking if such flows transmit at a sustained level above the contracted rate. +---------+ | Rate | Rate |estimator| ========== | | | +---------+ | ^ V | +---------+ | | | Packet ====================>| Marker |====> Marked packet stream Stream | | (Green, Yellow and Red) +---------+ Figure 1. Block diagram for the TSWTCM The colour of the packet is translated into a DS field packet marking. The colours red, yellow and green translate into DS codepoints representing drop precedence 2, 1 and 0 of a single AF class respectively. Based on feedback from four different implementations, the TSWTCM is simple and straightforward to implement. The TSWTCM can be implemented in either software or hardware depending on the nature of the forwarding engine.Fang, et al. Experimental [Page 2]RFC 2859 TSWTCM June 20003.0 Rate Estimator The Rate Estimator provides an estimate of the traffic stream's arrival rate. This rate should approximate the running average bandwidth of the traffic stream over a specific period of time (AVG_INTERVAL). This memo does not specify a particular algorithm for the Rate Estimator. However, different Rate Estimators should yield similar results in terms of bandwidth estimation over the same fixed window (AVG_INTERVAL) of time. Examples of Rate Estimation schemes include: exponential weighted moving average (EWMA) and the time-based rate estimation algorithm provided in [TON98]. Preferably, the Rate Estimator SHOULD maintain time-based history for its bandwidth estimation. However, the Rate Estimator MAY utilize weight-based history. In this case, the Estimator used should discuss how the weight translates into a time-window such as AVG_INTERVAL. Since weight-based Estimators track bandwidth based on packet arrivals, a high-sending traffic stream will decay its past history faster than a low-sending traffic stream. The time-based Estimator is intended to address this problem. The latter Rate Estimator utilizes a low-pass filter decaying function. [FANG99] shows that this Rate Estimator decays past history independently of the traffic stream's packet arrival rate. The algorithm for the Rate Estimator from [TON98] is shown in Figure 2 below.Fang, et al. Experimental [Page 3]RFC 2859 TSWTCM June 2000========================================================================|Initially: || || AVG_INTERVAL = a constant; || avg-rate = CTR; || t-front = 0; || ||Upon each packet's arrival, the rate estimator updates its variables: || || Bytes_in_win = avg-rate * AVG_INTERVAL; || New_bytes = Bytes_in_win + pkt_size; || avg-rate = New_bytes/( now - t-front + AVG_INTERVAL); || t-front = now; || ||Where: || now = The time of the current packet arrival || pkt_size = The packet size in bytes of the arriving packet || avg-rate = Measured Arrival Rate of traffic stream || AVG_INTERVAL = Time window over which history is kept || || || Figure 2. Example Rate Estimator Algorithm || |======================================================================== The Rate Estimator MAY operate in the Router Forwarding Path or as a background function. In the latter case, the implementation MUST ensure that the Estimator provides a reasonably accurate estimation of the sending rate over a window of time. The Rate Estimator MAY sample only certain packets to determine the rate.4.0 Marker The Marker determines the colour of a packet based on the algorithm presented in Figure 3. The overall effect of the marker on the packets of a traffic stream is to ensure that: - If the estimated average rate is less than or equal to the CTR, packets of the stream are designated green. - If the estimated average rate is greater than the CTR but less than or equal to the PTR, packets are designated yellow with probability P0 and designated green with probability (1-P0). P0 is the fraction of packets contributing to the measured rate beyond the CTR.Fang, et al. Experimental [Page 4]RFC 2859 TSWTCM June 2000 =================================================================== | avg-rate = Estimated Avg Sending Rate of Traffic Stream | | | | if (avg-rate <= CTR) | | the packet is green; | | else if (avg-rate <= PTR) AND (avg-rate > CTR) | | (avg-rate - CTR) | | calculate P0 = ---------------- | | avg-rate | | with probability P0 the packet is yellow; | | with probability (1-P0) the packet is green; | | else | | (avg-rate - PTR) | | calculate P1 = ---------------- | | avg-rate | | (PTR - CTR) | | calculate P2 = ----------- | | avg-rate | | with probability P1 the packet is red; | | with probability P2 the packet is yellow; | | with probability (1-(P1+P2)) the packet is green; | | | | Figure 3. TSWTCM Marking Algorithm | ===================================================================
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -