📄 rfc2582.txt
字号:
Network Working Group S. FloydRequest for Comments: 2582 ACIRICategory: Experimental T. Henderson U.C. Berkeley April 1999 The NewReno Modification to TCP's Fast Recovery AlgorithmStatus of this Memo This memo defines an Experimental Protocol for the Internet community. It does not specify an Internet standard of any kind. Discussion and suggestions for improvement are requested. Distribution of this memo is unlimited.Copyright Notice Copyright (C) The Internet Society (1999). All Rights Reserved.Abstract RFC 2001 [RFC2001] documents the following four intertwined TCP congestion control algorithms: Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery. RFC 2581 [RFC2581] explicitly allows certain modifications of these algorithms, including modifications that use the TCP Selective Acknowledgement (SACK) option [MMFR96], and modifications that respond to "partial acknowledgments" (ACKs which cover new data, but not all the data outstanding when loss was detected) in the absence of SACK. This document describes a specific algorithm for responding to partial acknowledgments, referred to as NewReno. This response to partial acknowledgments was first proposed by Janey Hoe in [Hoe95].1. Introduction For the typical implementation of the TCP Fast Recovery algorithm described in [RFC2581] (first implemented in the 1990 BSD Reno release, and referred to as the Reno algorithm in [FF96]), the TCP data sender only retransmits a packet after a retransmit timeout has occurred, or after three duplicate acknowledgements have arrived triggering the Fast Retransmit algorithm. A single retransmit timeout might result in the retransmission of several data packets, but each invocation of the Reno Fast Retransmit algorithm leads to the retransmission of only a single data packet.Floyd & Henderson Experimental [Page 1]RFC 2582 NewReno Modification to TCP's Fast Recovery April 1999 Problems can arise, therefore, when multiple packets have been dropped from a single window of data and the Fast Retransmit and Fast Recovery algorithms are invoked. In this case, if the SACK option is available, the TCP sender has the information to make intelligent decisions about which packets to retransmit and which packets not to retransmit during Fast Recovery. This document applies only for TCP connections that are unable to use the TCP Selective Acknowledgement (SACK) option. In the absence of SACK, there is little information available to the TCP sender in making retransmission decisions during Fast Recovery. From the three duplicate acknowledgements, the sender infers a packet loss, and retransmits the indicated packet. After this, the data sender could receive additional duplicate acknowledgements, as the data receiver acknowledges additional data packets that were already in flight when the sender entered Fast Retransmit. In the case of multiple packets dropped from a single window of data, the first new information available to the sender comes when the sender receives an acknowledgement for the retransmitted packet (that is the packet retransmitted when Fast Retransmit was first entered). If there had been a single packet drop, then the acknowledgement for this packet will acknowledge all of the packets transmitted before Fast Retransmit was entered (in the absence of reordering). However, when there were multiple packet drops, then the acknowledgement for the retransmitted packet will acknowledge some but not all of the packets transmitted before the Fast Retransmit. We call this packet a partial acknowledgment. Along with several other suggestions, [Hoe95] suggested that during Fast Recovery the TCP data sender respond to a partial acknowledgment by inferring that the indicated packet has been lost, and retransmitting that packet. This document describes a modification to the Fast Recovery algorithm in Reno TCP that incorporates a response to partial acknowledgements received during Fast Recovery. We call this modified Fast Recovery algorithm NewReno, because it is a slight but significant variation of the basic Reno algorithm. This document does not discuss the other suggestions in [Hoe95] and [Hoe96], such as a change to the ssthresh parameter during Slow- Start, or the proposal to send a new packet for every two duplicate acknowledgements during Fast Recovery. The version of NewReno in this document also draws on other discussions of NewReno in the literature [LM97]. We do not claim that the NewReno version of Fast Recovery described here is an optimal modification of Fast Recovery for responding to partial acknowledgements, for TCPs that are unable to use SACK. Based on our experiences with the NewReno modification in the NSFloyd & Henderson Experimental [Page 2]RFC 2582 NewReno Modification to TCP's Fast Recovery April 1999 simulator [NS], we believe that this modification improves the performance of the Fast Retransmit and Fast Recovery algorithms in a wide variety of scenarios, and we are simply documenting it for the benefit of the IETF community. We encourage the use of this modification to Fast Recovery, and we further encourage feedback about operational experiences with this or related modifications.2. Definitions This document assumes that the reader is familiar with the terms MAXIMUM SEGMENT SIZE (MSS), CONGESTION WINDOW (cwnd), and FLIGHT SIZE (FlightSize) defined in [RFC2581]. FLIGHT SIZE is defined as in [RFC2581] as follows: FLIGHT SIZE: The amount of data that has been sent but not yet acknowledged.3. The Fast Retransmit and Fast Recovery algorithms in NewReno The standard implementation of the Fast Retransmit and Fast Recovery algorithms is given in [RFC2581]. The NewReno modification of these algorithms is given below. This NewReno modification differs from the implementation in [RFC2581] only in the introduction of the variable "recover" in step 1, and in the response to a partial or new acknowledgement in step 5. The modification defines a "Fast Recovery procedure" that begins when three duplicate ACKs are received and ends when either a retransmission timeout occurs or an ACK arrives that acknowledges all of the data up to and including the data that was outstanding when the Fast Recovery procedure began. 1. When the third duplicate ACK is received and the sender is not already in the Fast Recovery procedure, set ssthresh to no more than the value given in equation 1 below. (This is equation 3 from [RFC2581]). ssthresh = max (FlightSize / 2, 2*MSS) (1) Record the highest sequence number transmitted in the variable "recover". 2. Retransmit the lost segment and set cwnd to ssthresh plus 3*MSS. This artificially "inflates" the congestion window by the number of segments (three) that have left the network and which the receiver has buffered. 3. For each additional duplicate ACK received, increment cwnd by MSS. This artificially inflates the congestion window in order to reflect the additional segment that has left the network.Floyd & Henderson Experimental [Page 3]RFC 2582 NewReno Modification to TCP's Fast Recovery April 1999 4. Transmit a segment, if allowed by the new value of cwnd and the receiver's advertised window. 5. When an ACK arrives that acknowledges new data, this ACK could be the acknowledgment elicited by the retransmission from step 2, or elicited by a later retransmission. If this ACK acknowledges all of the data up to and including "recover", then the ACK acknowledges all the intermediate segments sent between the original transmission of the lost segment and the receipt of the third duplicate ACK. Set cwnd to either (1) min (ssthresh, FlightSize + MSS); or (2) ssthresh, where ssthresh is the value set in step 1; this is termed "deflating" the window. (We note that "FlightSize" in step 1 referred to the amount of data outstanding in step 1, when Fast Recovery was entered, while "FlightSize" in step 5 refers to the amount of data outstanding in step 5, when Fast Recovery is exited.) If the second option is selected, the implementation should take measures to avoid a possible burst of data, in case the amount of data outstanding in the network was much less than the new congestion window allows [HTH98]. Exit the Fast Recovery procedure. If this ACK does *not* acknowledge all of the data up to and including "recover", then this is a partial ACK. In this case, retransmit the first unacknowledged segment. Deflate the congestion window by the amount of new data acknowledged, then add back one MSS and send a new segment if permitted by the new value of cwnd. This "partial window deflation" attempts to ensure that, when Fast Recovery eventually ends, approximately ssthresh amount of data will be outstanding in the network. Do not exit the Fast Recovery procedure (i.e., if any duplicate ACKs subsequently arrive, execute Steps 3 and 4 above). For the first partial ACK that arrives during Fast Recovery, also reset the retransmit timer. Note that in Step 5, the congestion window is deflated when a partial acknowledgement is received. The congestion window was likely to have been inflated considerably when the partial acknowledgement was received. In addition, depending on the original pattern of packet losses, the partial acknowledgement might acknowledge nearly a window of data. In this case, if the congestion window was not deflated, the data sender might be able to send nearly a window of data back- to-back. There are several possible variants to the simple response to partialFloyd & Henderson Experimental [Page 4]RFC 2582 NewReno Modification to TCP's Fast Recovery April 1999 acknowledgements described above. First, there is a question of when to reset the retransmit timer after a partial acknowledgement. This is discussed further in Section 4 below. There is a related question of how many packets to retransmit after each partial acknowledgement. The algorithm described above retransmits a single packet after each partial acknowledgement. This is the most conservative alternative, in that it is the least likely to result in an unnecessarily-retransmitted packet. A variant that would recover faster from a window with many packet drops would be to effectively Slow-Start, requiring less than N roundtrip times to recover from N losses [Hoe96]. With this slightly-more-aggressive response to partial acknowledgements, it would be advantageous to reset the retransmit timer after each retransmission. Because we have not experimented with this variant in our simulator, we do not discuss this variant further in this document. A third question involves avoiding multiple Fast Retransmits caused by the retransmission of packets already received by the receiver. This is discussed in Section 5 below. Avoiding multiple Fast Retransmits is particularly important if more aggressive responses to partial acknowledgements are implemented, because in this case the sender is more likely to retransmit packets already received by the receiver. As a final note, we would observe that in the absence of the SACK option, the data sender is working from limited information. One could spend a great deal of time considering exactly which variant of Fast Recovery is optimal for which scenario in this case. When the issue of recovery from multiple dropped packets from a single window of data is of particular importance, the best alternative would be to use the SACK option.4. Resetting the retransmit timer. The algorithm in Section 3 resets the retransmit timer only after the first partial ACK. In this case, if a large number of packets were dropped from a window of data, the TCP data sender's retransmit timer will ultimately expire, and the TCP data sender will invoke Slow- Start. (This is illustrated on page 12 of [F98].) We call this the Impatient variant of NewReno. In contrast, the NewReno simulations in [FF96] illustrate the algorithm described above, with the modification that the retransmit timer is reset after each partial acknowledgement. We call this the Slow-but-Steady variant of NewReno. In this case, for a window with a large number of packet drops, the TCP data sender retransmits at most one packet per roundtrip time. (This behavior is illustrated inFloyd & Henderson Experimental [Page 5]RFC 2582 NewReno Modification to TCP's Fast Recovery April 1999 the New-Reno TCP simulation of Figure 5 in [FF96], and on page 11 of [F98].) For TCP implementations where the Retransmission Timeout Value (RTO) is generally not much larger than the round-trip time (RTT), the Impatient variant can result in a retransmit timeout even in a scenario with a small number of packet drops. For TCP implementations where the Retransmission Timeout Value (RTO) is usually considerably larger than the round-trip time (RTT), the Slow- but-Steady variant can remain in Fast Recovery for a long time when multiple packets have been dropped from a window of data. Neither of these variants are optimal; one possibility for a more optimal algorithm might be one that recovered more quickly from multiple packet drops, and combined this with the Slow-but-Steady variant in terms of resetting the retransmit timers. We note, however, that there is a limitation to the potential performance in this case in the absence of the SACK option.5. Avoiding Multiple Fast Retransmits In the absence of the SACK option, a duplicate acknowledgement carries no information to identify the data packet or packets at the TCP data receiver that triggered that duplicate acknowledgement. The TCP data sender is unable to distinguish between a duplicate acknowledgement that results from a lost or delayed data packet, and a duplicate acknowledgement that results from the sender's retransmission of a data packet that had already been received at the TCP data receiver. Because of this, multiple segment losses from a single window of data can sometimes result in unnecessary multiple Fast Retransmits (and multiple reductions of the congestion window) [Flo94]. With the Fast Retransmit and Fast Recovery algorithms in Reno or NewReno TCP, the performance problems caused by multiple Fast Retransmits are relatively minor (compared to the potential problems with Tahoe TCP, which does not implement Fast Recovery). Nevertheless, unnecessary Fast Retransmits can occur with Reno or NewReno TCP, particularly if a Retransmit Timeout occurs during Fast Recovery. (This is illustrated for Reno on page 6 of [F98], and for NewReno on page 8 of [F98].) With NewReno, the data sender remains in Fast Recovery until either a Retransmit Timeout, or until all of the data outstanding when Fast Retransmit was entered has been acknowledged. Thus with NewReno, the problem of multiple Fast Retransmits from a single window of data can only occur after a Retransmit Timeout. The following modification to the algorithms in Section 3 eliminates the problem of multiple Fast Retransmits. (This modification isFloyd & Henderson Experimental [Page 6]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -