📄 rfc2402.txt
字号:
Network Working Group S. KentRequest for Comments: 2402 BBN CorpObsoletes: 1826 R. AtkinsonCategory: Standards Track @Home Network November 1998 IP Authentication HeaderStatus of this Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.Copyright Notice Copyright (C) The Internet Society (1998). All Rights Reserved.Table of Contents 1. Introduction......................................................2 2. Authentication Header Format......................................3 2.1 Next Header...................................................4 2.2 Payload Length................................................4 2.3 Reserved......................................................4 2.4 Security Parameters Index (SPI)...............................4 2.5 Sequence Number...............................................5 2.6 Authentication Data ..........................................5 3. Authentication Header Processing..................................5 3.1 Authentication Header Location...............................5 3.2 Authentication Algorithms....................................7 3.3 Outbound Packet Processing...................................8 3.3.1 Security Association Lookup.............................8 3.3.2 Sequence Number Generation..............................8 3.3.3 Integrity Check Value Calculation.......................9 3.3.3.1 Handling Mutable Fields............................9 3.3.3.1.1 ICV Computation for IPv4.....................10 3.3.3.1.1.1 Base Header Fields.......................10 3.3.3.1.1.2 Options..................................11 3.3.3.1.2 ICV Computation for IPv6.....................11 3.3.3.1.2.1 Base Header Fields.......................11 3.3.3.1.2.2 Extension Headers Containing Options.....11 3.3.3.1.2.3 Extension Headers Not Containing Options.11 3.3.3.2 Padding...........................................12 3.3.3.2.1 Authentication Data Padding..................12Kent & Atkinson Standards Track [Page 1]RFC 2402 IP Authentication Header November 1998 3.3.3.2.2 Implicit Packet Padding......................12 3.3.4 Fragmentation..........................................12 3.4 Inbound Packet Processing...................................13 3.4.1 Reassembly.............................................13 3.4.2 Security Association Lookup............................13 3.4.3 Sequence Number Verification...........................13 3.4.4 Integrity Check Value Verification.....................15 4. Auditing.........................................................15 5. Conformance Requirements.........................................16 6. Security Considerations..........................................16 7. Differences from RFC 1826........................................16 Acknowledgements....................................................17 Appendix A -- Mutability of IP Options/Extension Headers............18 A1. IPv4 Options.................................................18 A2. IPv6 Extension Headers.......................................19 References..........................................................20 Disclaimer..........................................................21 Author Information..................................................22 Full Copyright Statement............................................221. Introduction The IP Authentication Header (AH) is used to provide connectionless integrity and data origin authentication for IP datagrams (hereafter referred to as just "authentication"), and to provide protection against replays. This latter, optional service may be selected, by the receiver, when a Security Association is established. (Although the default calls for the sender to increment the Sequence Number used for anti-replay, the service is effective only if the receiver checks the Sequence Number.) AH provides authentication for as much of the IP header as possible, as well as for upper level protocol data. However, some IP header fields may change in transit and the value of these fields, when the packet arrives at the receiver, may not be predictable by the sender. The values of such fields cannot be protected by AH. Thus the protection provided to the IP header by AH is somewhat piecemeal. AH may be applied alone, in combination with the IP Encapsulating Security Payload (ESP) [KA97b], or in a nested fashion through the use of tunnel mode (see "Security Architecture for the Internet Protocol" [KA97a], hereafter referred to as the Security Architecture document). Security services can be provided between a pair of communicating hosts, between a pair of communicating security gateways, or between a security gateway and a host. ESP may be used to provide the same security services, and it also provides a confidentiality (encryption) service. The primary difference between the authentication provided by ESP and AH is the extent of the coverage. Specifically, ESP does not protect any IP header fieldsKent & Atkinson Standards Track [Page 2]RFC 2402 IP Authentication Header November 1998 unless those fields are encapsulated by ESP (tunnel mode). For more details on how to use AH and ESP in various network environments, see the Security Architecture document [KA97a]. It is assumed that the reader is familiar with the terms and concepts described in the Security Architecture document. In particular, the reader should be familiar with the definitions of security services offered by AH and ESP, the concept of Security Associations, the ways in which AH can be used in conjunction with ESP, and the different key management options available for AH and ESP. (With regard to the last topic, the current key management options required for both AH and ESP are manual keying and automated keying via IKE [HC98].) The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be interpreted as described in RFC 2119 [Bra97].2. Authentication Header Format The protocol header (IPv4, IPv6, or Extension) immediately preceding the AH header will contain the value 51 in its Protocol (IPv4) or Next Header (IPv6, Extension) field [STD-2]. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Next Header | Payload Len | RESERVED | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Security Parameters Index (SPI) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Sequence Number Field | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | + Authentication Data (variable) | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ The following subsections define the fields that comprise the AH format. All the fields described here are mandatory, i.e., they are always present in the AH format and are included in the Integrity Check Value (ICV) computation (see Sections 2.6 and 3.3.3).Kent & Atkinson Standards Track [Page 3]RFC 2402 IP Authentication Header November 19982.1 Next Header The Next Header is an 8-bit field that identifies the type of the next payload after the Authentication Header. The value of this field is chosen from the set of IP Protocol Numbers defined in the most recent "Assigned Numbers" [STD-2] RFC from the Internet Assigned Numbers Authority (IANA).2.2 Payload Length This 8-bit field specifies the length of AH in 32-bit words (4-byte units), minus "2". (All IPv6 extension headers, as per RFC 1883, encode the "Hdr Ext Len" field by first subtracting 1 (64-bit word) from the header length (measured in 64-bit words). AH is an IPv6 extension header. However, since its length is measured in 32-bit words, the "Payload Length" is calculated by subtracting 2 (32 bit words).) In the "standard" case of a 96-bit authentication value plus the 3 32-bit word fixed portion, this length field will be "4". A "null" authentication algorithm may be used only for debugging purposes. Its use would result in a "1" value for this field for IPv4 or a "2" for IPv6, as there would be no corresponding Authentication Data field (see Section 3.3.3.2.1 on "Authentication Data Padding").2.3 Reserved This 16-bit field is reserved for future use. It MUST be set to "zero." (Note that the value is included in the Authentication Data calculation, but is otherwise ignored by the recipient.)2.4 Security Parameters Index (SPI) The SPI is an arbitrary 32-bit value that, in combination with the destination IP address and security protocol (AH), uniquely identifies the Security Association for this datagram. The set of SPI values in the range 1 through 255 are reserved by the Internet Assigned Numbers Authority (IANA) for future use; a reserved SPI value will not normally be assigned by IANA unless the use of the assigned SPI value is specified in an RFC. It is ordinarily selected by the destination system upon establishment of an SA (see the Security Architecture document for more details). The SPI value of zero (0) is reserved for local, implementation- specific use and MUST NOT be sent on the wire. For example, a key management implementation MAY use the zero SPI value to mean "No Security Association Exists" during the period when the IPsec implementation has requested that its key management entity establish a new SA, but the SA has not yet been established.Kent & Atkinson Standards Track [Page 4]RFC 2402 IP Authentication Header November 19982.5 Sequence Number This unsigned 32-bit field contains a monotonically increasing counter value (sequence number). It is mandatory and is always present even if the receiver does not elect to enable the anti-replay service for a specific SA. Processing of the Sequence Number field is at the discretion of the receiver, i.e., the sender MUST always transmit this field, but the receiver need not act upon it (see the discussion of Sequence Number Verification in the "Inbound Packet Processing" section below). The sender's counter and the receiver's counter are initialized to 0 when an SA is established. (The first packet sent using a given SA will have a Sequence Number of 1; see Section 3.3.2 for more details on how the Sequence Number is generated.) If anti-replay is enabled (the default), the transmitted Sequence Number must never be allowed to cycle. Thus, the sender's counter and the receiver's counter MUST be reset (by establishing a new SA and thus a new key) prior to the transmission of the 2^32nd packet on an SA.2.6 Authentication Data This is a variable-length field that contains the Integrity Check Value (ICV) for this packet. The field must be an integral multiple of 32 bits in length. The details of the ICV computation are described in Section 3.3.2 below. This field may include explicit padding. This padding is included to ensure that the length of the AH header is an integral multiple of 32 bits (IPv4) or 64 bits (IPv6). All implementations MUST support such padding. Details of how to compute the required padding length are provided below. The authentication algorithm specification MUST specify the length of the ICV and the comparison rules and processing steps for validation.3. Authentication Header Processing3.1 Authentication Header Location Like ESP, AH may be employed in two ways: transport mode or tunnel mode. The former mode is applicable only to host implementations and provides protection for upper layer protocols, in addition to selected IP header fields. (In this mode, note that for "bump-in- the-stack" or "bump-in-the-wire" implementations, as defined in the Security Architecture document, inbound and outbound IP fragments may require an IPsec implementation to perform extra IP reassembly/fragmentation in order to both conform to this specification and provide transparent IPsec support. Special care is required to perform such operations within these implementations when multiple interfaces are in use.)Kent & Atkinson Standards Track [Page 5]RFC 2402 IP Authentication Header November 1998 In transport mode, AH is inserted after the IP header and before an upper layer protocol, e.g., TCP, UDP, ICMP, etc. or before any other IPsec headers that have already been inserted. In the context of IPv4, this calls for placing AH after the IP header (and any options that it contains), but before the upper layer protocol. (Note that the term "transport" mode should not be misconstrued as restricting its use to TCP and UDP. For example, an ICMP message MAY be sent using either "transport" mode or "tunnel" mode.) The following diagram illustrates AH transport mode positioning for a typical IPv4 packet, on a "before and after" basis. BEFORE APPLYING AH ---------------------------- IPv4 |orig IP hdr | | | |(any options)| TCP | Data | ---------------------------- AFTER APPLYING AH --------------------------------- IPv4 |orig IP hdr | | | | |(any options)| AH | TCP | Data | --------------------------------- |<------- authenticated ------->|
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -